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Abstract

Philosophers have recently attempted to justify particular belief revision
procedures by arguing that they are the optimal means towards the
epistemic end of accurate credences. These attempts, however, presuppose
that means should be evaluated according to classical expected utility
theory; and there is a long tradition maintaining that expected utility
theory is too restrictive as a theory of means-end rationality, ruling out
too many natural ways of taking risk into account. In this paper, we
investigate what belief-revision procedures are supported by accuracy-
theoretic considerations once we depart from expected utility theory to
allow agents to be risk-sensitive. We argue that, if accuracy-theoretic
considerations tell risk-sensitive agents anything about belief-revision,
they tell them the same thing they tell risk-neutral agents: they should
conditionalize.
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1 Introduction

Philosophers have recently attempted to justify particular belief revision proce-
dures by arguing that they are the optimal means towards the epistemic end of
accurate credences.1 These attempts, however, presuppose that means should
be evaluated according to classical expected utility theory;2 and there is a long
tradition maintaining that expected utility theory is too restrictive as a theory
of means-end rationality, ruling out too many natural ways of taking risk into
account.3 In this paper, we investigate what belief revision procedures are sup-
ported by accuracy-theoretic considerations once we depart from expected utility
theory to allow agents to be risk-sensitive. We argue that, if accuracy-theoretic
considerations tell risk-sensitive agents anything about belief-revision, they tell
them the same thing they tell risk-neutral agents: they should conditionalize,
that is, they should respond to evidence E (in which their prior credence wasn’t
0) by adopting as their new credence in any proposition X their prior credence

in X conditional on E, c(X|E) = c(X∧E)
c(E) .

We specifically focus on Lara Buchak’s ([2013]) Risk-Weighted Expected
Utility Theory. Section 2 describes this theory and discusses how to think
of accuracy when working with it. We then distinguish two broad ways of
using accuracy considerations to evaluate update procedures. On the ‘local’
approach, most explicit in (Leitgeb and Pettigrew [2010]), we determine the
optimal response to some particular evidence E by comparing different updated
credences for accuracy across the worlds consistent with E. Section 3 argues
that this approach recommends that risk-sensitive agents conditionalize. On a
more ‘global’ approach, employed in (Greaves and Wallace [2006]), we compare
the accuracy of complete update strategies that specify updated credences for
each of the various pieces of evidence the agent might receive. We will see that
risk-sensitive agents should often regard as optimal a global update strategy that
diverges from conditionalization (section 4.1). However, we argue that, in the
risk-sensitive setting, this is no reason to think that they should actually update
in this non-standard way (section 4.2). We conclude that accuracy considerations
either tell risk-sensitive agents nothing about how to update their beliefs, or else
tell them to conditionalize.

Throughout the paper, we will make some controversial assumptions. For
example, we will assume that Buchak’s theory is an attractive theory of risk-
sensitivity, and that considerations of (risk-weighted) expected accuracy are
probative when it comes to determining the norms of belief revision.4 Some of

1See (Greaves and Wallace [2006]; Leitgeb and Pettigrew [2010]; Easwaran [2013]; Pettigrew
[2016], Part IV; Briggs and Pettigrew [forthcoming]; Gallow [2019]).

2The reliance on expected utility theory is clear in most cases. An exception is the argument
in (Briggs and Pettigrew [forthcoming]) which initially seems to use only dominance reasoning;
however, for reasons explained in footnote 9, even this argument implicitly relies on expected
utility theory.

3See (Allais [1953]; Machina [1982]) for classic and (Buchak [2013]; Bradley and Stefansson
[2019]) for recent discussion.

4For worries about accuracy-theoretic approaches to belief revision, see (Greaves [2013];
Berker [2013]; Carr [2017]; Pettigrew [2016], ch. 15). For criticism of Buchak’s theory, see
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the consequences we draw out from these assumptions may ultimately reduce
their plausibility. However, we will not call them into question on this basis –
our project, which is interesting and complex enough as it stands, is to see where
they lead.

2 Preliminary material

We begin with a brief introduction to our two ingredients: risk weighted expected
utility theory and accuracy. In particular, we discuss how accuracy considerations
apply to the risk-sensitive; as we’ll see, new accuracy measures are needed.

2.1 Risk Weighted Expected Utility Theory

In standard expected utility theory, agents face a choice between acts, which
are functions from states of the world to outcomes. They assign credences c to
the states, representing how likely they think each one is to obtain; and they
assign utilities U to the outcomes, representing how good they take each one to
be. We can then, somewhat non-standardly, define the expected utility of an act
as follows:5

Expected utility: Suppose an act, A, leads to outcomes o1, . . . , on in states
s1, . . . , sn with U(o1) 6 . . . 6 U(on). For notational purposes, we introduce
a further ‘outcome’ o0 with U(o0) = 0. Then the expected utility of A is:

Expc U(A) =
∑
i

((∑
j>i

c(sj)
)
×
(
U(oi)− U(oi−1)

))
= U(o1)

+ (c(s2) + . . . + c(sn)) · (U(o2)− U(o1))

. . .

+ c(sn) · (U(on)− U(on−1))

Intuitively, the expected utility is here calculated by first taking the utility
of the worst-case scenario; adding the improvement over the worst-case scenario
secured in the second-worst-case scenario, weighted by the probability of securing
at least that improvement; adding the improvement over the second-worst-case
scenario secured in the third-worst-case scenario, weighted by the probability of
securing at least that improvement; and continuing like this until all the possible
improvements have been taken into account.

Risk weighted expected utility introduces an additional component: the
agent’s risk profile r, representing her tendency towards worst-case-scenario style
reasoning. Formally, r is a continuous, strictly increasing function from [0, 1]

(Pettigrew [2015]; Briggs [2015]; Thoma and Weisberg [2017]; Joyce [2017]; Bradley and
Stefansson [2019]).

5The standard definition is Expc U(A) =
∑

i

(
c(si)× U(oi)

)
. This is equivalent, but the

more complicated definition clarifies the relation to risk-weighted expected utilities.
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to [0, 1] with r(0) = 0 and r(1) = 1. Risk-weighted expected utilities are then
defined as follows:

Risk-weighted expected utility: Suppose an act, A, leads to outcomes
o1, . . . , on in states s1, . . . , sn with U(o1) 6 . . . 6 U(on). Let U(o0) = 0, by
stipulation. Then the risk-weighted expected utility of A is:

RExpr
c U(A) =

∑
i

(
r
(∑

j>i

c(sj)
)
×
(
U(oi)− U(oi−1)

))
= U(o1)

+ r(c(s2) + c(s3) + . . . + c(sn))× (U(o2)− U(o1))

+ r(c(s3) + . . . + c(sn))× (U(o3)− U(o2))

. . .

+ r(c(sn))× (U(on)− U(on−1))

Intuitively, r has an effect by modifying the weight given to possible improve-
ments depending on how likely they are to come about. For someone with the
risk-neutral profile r(x) = x, the theory collapses into expected utility theory.
But if, for example, r(x) < x, the risk-weighted expected utility of an action that
is guaranteed to secure 5 utiles, and thus has risk-weighted utility of 5, exceeds
that of taking a gamble with a 1/2 chance of securing 10 utiles and a 1/2 chance of
securing none (which has risk-weighted expected utility 0 + r(1/2) · (10− 0) < 5).
Including r thus allows for a novel form of risk-avoidance.

Buchak ([2013]) argues at length that at least some risk-sensitivity, as spelled
out by risk-weighted expected utility theory with a non-neutral r, is rationally
permissible. Here, we simply assume she is right, and investigate the consequences
for accuracy-theoretic approaches to belief revision.

2.2 Accuracy for the risk-sensitive

Accuracy-theoretic approaches to belief revision attempt to justify update proce-
dures by the anticipated ‘accuracy’, or closeness to the truth, of the beliefs they
result in. An accuracy measure associates with each y ∈ [0, 1] and v ∈ {0, 1} a
real number A(y, v), representing how accurate a credence of y in a proposition
X is when X has truth value v.6 One prominent such measure is the Brier
score:7

A(y, v) = −(y − v)2

We can think of the accuracy of a credence in a world as the ‘epistemic utility’
achieved by adopting it there. Assuming expected utility theory, accuracy-
theoretic approaches then defend a particular update procedure (such as condi-
tionalization) by showing that adopting the beliefs it recommends has higher
expected accuracy than any alternative.

6We associate 0 with false, and 1 with true.
7To simplify the interaction with Buchak’s theory, we consider accuracy rather than the

more standard inaccuracy.
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When allowing for risk-sensitivity, we should replace expected with risk-
weighted expected accuracy – at least if, following Buchak, we think of risk-
sensitivity not as a matter of how valuable the outcomes are, but as a matter of
how their value determines the choiceworthiness of the means.8 But this means
that accuracy measures like the Brier Score are no longer suitable. The problem
is that these measures satisfy

Propriety: A is (strictly) proper if for all probabilistic c, Expc A(c(X)) >
Expc A(y) when y 6= c(X).

And if we use proper accuracy measures, probabilistic agents with credences that
are non-extremal and not 1/2 will always risk-weightedly expect some other cre-
dences to be more accurate than their own.9 This violates a plausible and widely
accepted constraint often used to motivate propriety, namely that probabilistic
agents should be immodest, preferring (as far as accuracy is concerned) their
current beliefs to any specific alternative.10 Consequently, it makes trouble for
the accuracy-theoretic approach to belief revision; for if an agent risk-weightedly
expects that other credences are more accurate than her own, this approach will
tell her to revise their beliefs to those new ones even when no new evidence is
encountered. This process, moreover, will either repeat indefinitely or will end
with the agent reaching 1/2.

We thus need accuracy measures that allow probabilistically coherent but
risk-sensitive agents to be immodest: to assign a higher risk-weighted expected
accuracy to their own credences than to any particular alternative. More precisely,
we want measures that satisfy

r-propriety: A is (strictly) r-proper if for all probabilistic c, RExpr
c A(c(X)) >

RExpr
c A(y) when y 6= c(X).

where

RExpr
c A(y) =

{
A(y, 0) + r(c(X))× (A(y, 1)−A(y, 0)) if A(y, 0) 6 A(y, 1)

A(y, 1) + r(c(¬X))× (A(y, 0)−A(y, 1)) if A(y, 1) 6 A(y, 0)

The results in section 3 require only that accuracy is measured by some
measure with this feature.

In section 4.1, we will need to assume a little more. Two relatively uncontro-
versial assumptions are:11

8See especially (Buchak [2013], p.34-36). See also (Campbell-Moore and Salow [forthcoming])
for discussion (and defence) of the move from expected to risk-weighted expected accuracy.

9This follows from a slightly fixed up version of the argument from (Pettigrew [2016],
Section 16.4) which shows that what maximizes RExpr

cA(y) is either r(c(X)) if this is > 1/2;
1− r(1− c(X)) if this is < 1/2; and otherwise 1/2 itself.
This is also why the argument in (Briggs and Pettigrew [forthcoming]) presupposes risk-
neutrality despite using only dominance as its decision rule: the argument requires strictly
proper accuracy measures, which are plausible for risk-neutral, but not risk-sensitive, agents.

10See (Oddie [1997]; Greaves and Wallace [2006]; Joyce [2009]).
11See, for example, (Joyce [2009]).
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Truth-Directedness: A is truth directed if A(y′, v) > A(y, v) whenever either
v 6 y′ < y or y < y′ 6 v.

0/1 Symmetry: A is 0/1 symmetric if A(y, 1) = A(1− y, 0).

These assumptions are primarily needed to tell us about how possible outcomes
are ordered, information we need to calculate risk-weighted expectations. In
addition, we will use the fact that r-propriety can be strengthened to:

Monotone r-propriety: A is monotone (strictly) r-proper if for all proba-
bilistic c, RExpr

c A(y′) > RExpr
c A(y) whenever either c(X) 6 y′ < y or

y < y′ 6 c(X).

This is an extremely natural generalisation of r-propriety. Furthermore, it
follows from r-propriety (in fact, only a weak form of r-propriety is required),
truth-directedness and 0/1-symmetry, by an extension of the argument from
(Campbell-Moore and Levinstein [forthcoming]).12

It’s worth noting explicitly that there are, in fact, accuracy measures that
have all these features.13 For example, for the risk-profile r(x) = x2, the following
modification of the Brier Score is truth-directed, 0/1 symmetric, and monotone
r-proper:14

AltBS(y, v) :=
−(v − y)2

max{y, 1− y}

We should emphasize that the measures we use only evaluate the accuracy of
a credence in a particular proposition, X, not of an entire credence distribution.
In fact, it is unclear that there are attractive measures of the accuracy of
entire distributions which obey constraints like r-propriety.15 Fortunately, the
most prominent accuracy-theoretic approaches to belief-revision require only
such ‘pointwise’ measures; adapting other approaches will have to wait until
risk-sensitive accuracy measures are better understood.16

12To extend the argument, use the formulation of risk-weighed expectations exploited in
section 4.1 to apply the argument in the case where y and y′ generate the same ordering of
states. To show it holds when they generate different orderings, compare both to 1/2, which
generates both orderings.

13(Campbell-Moore and Levinstein [unpublished]) shows that these exist for any risk profile.
14To see that it is (monotone) r-proper, differentiate RExpr

c AltBS(y) and note this is > 0
for y < c(X) and < 0 for y > c(X).

15See (Campbell-Moore and Levinstein [unpublished]).
16(Leitgeb and Pettigrew [2010]) and (Leinvstein [2012]) explore an approach where the

agent selects the expected accuracy maximizing probability distribution amongst those meeting
some additional evidential constraint like p(E) = 1. If we only consider a target proposition,
X, then typically her prior credence in X will be in the range of options, so (r-)propriety will
mean she evaluates her prior credence as optimal.
(Briggs and Pettigrew [forthcoming]) argues that pairs of priors and update strategies are
accuracy-dominated if they are not conditionalization pairs. If we only look at the accuracy of
credences in X, we have no hope of motivating a particular update rule because the information
– for example, whether it is the result of conditionalization – isn’t available to the dominance
argument.
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3 The Local Approach

The first accuracy-theoretic approach to belief revision maintains that agents
should adopt as their new credence in X the value that maximizes (risk-weighted)
expected accuracy, as calculated by their prior credences over the possibilities
consistent with the evidence that has been gathered. (Leitgeb and Pettigrew
[2010]) shows that, in the risk-neutral case, this means that agents should
conditionalize; we will argue that this also holds for risk-sensitive agent.

There are two pictures we can use to motivate this approach. The first is a
picture of belief revision on which the immediate, arational effect of learning E
is that all ¬E possibilities drop out from the agent’s credal state. It is only once
this has happened that the rational aspect of belief-revision can take place. The
agent is left with her previous credences in the various possibilities compatible
with E, which (remaining – as yet – unmodified) fail to add up to 1 and hence fail
to constitute a probability distribution. She then uses these (non-probabilistic)
credences to decide what credences to adopt, by maximizing (risk-weighted)
expected accuracy. This means that she will adopt the credences that maximize
(risk-weighted) expected accuracy, as calculated using her prior credences over
the worlds consistent with E.

This is not, of course, an accurate representation of how agents actually revise
their beliefs. For example, there probably isn’t really a time when agents are in
this intermediate state of having learned the evidence, but not yet having updated
any of their credences. But perhaps it is a reasonable rational reconstruction of
how updating, if it were a temporally extended and deliberate process, might go;
and that would be enough.

On the second picture, by contrast, we do not consider an agent who has
already learned E; instead, we consider an agent who is thinking about the
possibility that she might learn E, and deciding how to respond if she does. The
options that such an agent is evaluating (‘if you learn E, adopt credence y’) are
partial or conditional, like the plan to take an umbrella if the weather forecast
predicts rain, or to take a bet at such-and-such odds if you are offered it. Unlike
ordinary actions, such partial plans correspond only to partial functions from
states to outcomes; their unrestricted expected utility is thus undefined. But,
intuitively, we can still compare the advisability of various partial plans (defined
over the same states), by comparing their expected utility as restricted to the
states in which they apply. In our case, this means calculating the (risk-weighted)
expected accuracy of different new credences in the possibilities in which the
agent learns E; hence, in the possibilities in which E is true.17

The two pictures, while quite different, motivate the same calculation: we
need to determine the risk-weighted expected accuracy of different credences

17This move between ‘possibilities in which the agent learns E’ and ‘possibilities in which E
is true’ is justified when the agent is guaranteed to receive as her evidence the true member
of some fixed partition. (Bronfman [2014]; Schoenfield [2017]; Das [2019]) all argue that this
doesn’t always hold, and that conditionalization isn’t supported by accuracy arguments in
cases where it doesn’t, even in the risk-neutral setting. Analogous worries clearly arise here;
for simplicity, we set them aside.
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in X over the set E, which doesn’t include all the possibilities. To do this, we
need to decide how to understand risk-weighted expectations when an agent’s
credences over the relevant states add up only to c(E) < 1. A natural first pass,
analogous to the one in (Leitgeb and Pettigrew [2010]), is as follows. Suppose
that E consists of exactly two states, sbad and sgood; and suppose that A leads
to outcomes obad and ogood in those states respectively, with U(obad) 6 U(ogood).
Since c(E) = c(sbad) + c(sgood), simply applying the original formula gets us:

NaiveRExpr
c U(A)�E=r(c(E))× U(obad) + r(c(sgood))× (U(ogood)− U(obad)).

We think that, if r has certain further properties, this is exactly right. Let us
say that r is multiplicative if it satisfies r(x×y) = r(x)×r(y) – as does r(x) = x2

and all other risk-profiles of the form r(x) = xk, which provide virtually all the
examples in the literature.18 We think that NaiveRExp makes exactly the right
predictions for agents with multiplicative risk-profiles. And, as we’ll see later,
agents of this kind need to conditionalize to maximize NaiveRExp.

For agents with non-multiplicative risk-profiles, however, maximizing Naive-
RExp will not lead to conditionalization. But we think that NaiveRExp has
independently implausible results for such agents, because it misinterprets how
r represents their attitude to risk. Moreover, we think that, once the formula is
modified to avoid this problem, we can get the stronger result that all agents,
regardless of risk-profile, should conditionalize.

Consider an agent with the non-multiplicative risk-profile represented in
figure 1.19 Such an agent is neither straight-out risk-avoidant, nor straight-out

c(H∧O) 1/2
c(H)
c(O)

1

1/2

1

Figure 1: A risk function that is non-multiplicative and leads to problems with
NaiveRExp.

risk-seeking. Rather, she seeks out small risks (she gives additional weight to

18(Buchak [2013]) mostly discusses r(x) = x2 and r(x) =
√
x = x1/2, while (Thoma and

Weisberg [2017]) discusses a range of profiles of this form. By contrast, the literature on the
closely related Cumulative Prospect Theory (Tversky and Wakker [1995]; Wakker [2010]), which
usually aims to model actual rather than rational preferences, often uses non-multiplicative
risk-profiles.

19Explicitly, r is given by: r(x) =

{
2x2 x 6 1/2

1− 2(1− x)2 x > 1/2
. There are also non-multiplicative

risk-profiles that look more uniform, such as r(x) = x2+x
2

; combining these with NaiveRExp
gives rise to the same problem, but they don’t illustrate it quite as intuitively.
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likely improvements) but avoids large ones (she tempers the weight given to
unlikely improvements). She has no strong feelings either way about medium-
sized risks (the weight she gives to an improvement that has even odds of coming
about matches its probability). We’ll argue that applying NaiveRExp to this
agent has implausible results.

To bring out the problem in an independent way, we will focus on practical
rationality, considering how NaiveRExp has our agent evaluate the partial plans
of taking or declining a bet, if it is offered. Suppose that our agent knows that
a fair coin will be tossed tomorrow; let H be the proposition that it will land
heads. Our agent also thinks that her erratic friend might, before the coin is
tossed, offer her a bet that pays 2 utils if H, and loses 1 util if ¬H. Let O
be the proposition that her friend offers the bet. Our agent thus finds herself
comparing two plans for what to do if O: the plan to take the bet, and the plan
to decline it. We will assume that c(H) = c(O) = 1/2; we also assume that, since
the agent knows that the coin is fair and that her friend has no supernatural
powers for predicting the outcomes of fair coins, she does not consider O to be
evidentially relevant to H. Then, if we use NaiveRExp to calculate the expected
utility, restricted to O, of taking the bet, we get:

NaiveRExpr
c U(Take)�O = r(c(O))× (−1) + r(c(H∧O))× (2−−1)

= r(1/2)× (−1) + r(1/2× 1/2)× 3 ≈ −0.125

So this formula has her evaluating the plan of taking the bet, if she is offered it,
as worse than that of declining (which guarantees a utility of 0).

This is, already, counterintuitive. Our agent considers a bet on H to have
the same chance of winning as it has of losing, regardless of whether O. Her
risk-profile suggests that she is indifferent to the kind of risk involved in such
even bets, neither seeking nor avoiding it. But then it’s hard to see why she
should think negatively of this bet which, after all, pays more when she wins
than it costs when she loses.

Things, however, get weirder still. For suppose we change the case slightly,
merely by making our agent more confident that her friend will offer the bet, so
that c(O) = 0.9. Then

NaiveRExpr
c U(Take)�O = r(0.9)× (−1) + r(1/2× 0.9)× 3 ≈ 1/2.

By changing the likelihood of being offered the bet, and without altering the
fact that our agent thinks that heads and tails are equally likely and that the
outcome is independent of whether she is offered the bet, we have reversed her
preference between the plan of taking the bet, if she is offered it, and the plan of
declining it. This is a bad result. How likely a plan is to be called upon might
affect whether it is worth making; but, if one is already in the business of making
a plan for that possibility, it should not affect which plan one makes.

The problems have a common source. For note that, unless c(O) is very high,
c(H∧O) is significantly below 1/2. This means that r, the agent’s risk-profile,
treats it as a low probability outcome, and thus tempers the weight given to
it in NaiveRExpr

c U(Take). But, intuitively, that is a mistake. For while the
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absolute probability of winning the bet in the O states is, indeed, relatively low,
winning is just as likely as losing, which is the only other relevant outcome. So
the relative probability of winning is moderate; and so the agent’s risk-profile
(which neither boosts nor tempers moderate risks) should neither boost nor
temper the weight it receives.

Analogous problems cannot arise with multiplicative risk-profiles. This is
because, when H and O are independent and r is multiplicative, we have

NaiveRExpr
c U(Take)�O

= r(c(O))× U(lose) + r(c(H∧O))× (U(win)− U(lose))

= r(c(O))×
(
U(lose) + r(c(H))× (U(win)− U(lose))

)
More generally, multiplicative risk profiles are only sensitive to the relative
probabilities of the various outcomes. So multiplying the absolute probability of
those outcomes without altering their relative probabilities, such as modifying
the probability of the independent proposition that the bet is offered, cannot
affect whether the bet is desirable or not.20

We can fix this problem NaiveRExp has with non-multiplicative profiles
by modifying the credences before applying r, aligning absolute and relative
probabilities. The standard implementation is renormalization, dividing all
credences by c(E). Since r(c(E)/c(E)) = r(1) = 1, doing this with NaiveRExp
yields

NormRExpr
c U(A)�E= U(obad) + r

(
c(sgood)

c(E)

)
× (U(ogood)− U(obad))

Unlike NaiveRExp, this formula has the agent above approve of the plan of
taking the bet if offered it even if she is not particularly likely to be offered it;
more generally, it makes her evaluations of the partial plan to take a bet on
a propositions like H independent of the probability of being offered that bet.
But it’s also easy to see that, when r is multiplicative, NaiveRExpr

c U(A)�E=
r(c(E))×NormRExpr

c U(A)�E , meaning that the two agree on the relative merits
of all plans restricted to E; so NormRExp doesn’t depart from NaiveRExp more
than it must to solve our problem.

What predictions does this make in the epistemic case? We can think of the
options as simply the various y ∈ [0, 1] the agent could adopt as her credence in
the relevant proposition X. The two relevant states, since they need to satisfy E,

20Multiplicativity is not only sufficient for this, but also necessary. For if r isn’t multiplicative,
we can find values for c(H) and c(O) such that r

(
c(H)×c(O)

)
6= r(c(H))×r(c(O)). So we can

choose values for U(win) and U(lose) such that

r(c(O))× U(lose) + r
(
c(H)×c(O)

)
× (U(win)− U(lose)) > 0

and r(c(O))× U(lose) + r(c(H))× r(c(O))× (U(win)− U(lose)) < 0

or visa versa. But then NaiveRExpr
U c(Take)�O> 0 at this c(O); but if we increase c(O) to 1

(or close to 1), we would reduce this to < 0 (or visa versa). So whether taking is preferable to
declining will depend on c(O).
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are simply E∧X and E∧¬X. The risk weighted expected accuracy, as restricted
to E, is thus

NormRExpr
c A(y)�E

=

{
A(y, 0) + r( c(E∧X)

c(E) )× (A(y, 1)−A(y, 0)) if A(y, 0) 6 A(y, 1)

A(y, 1) + r( c(E∧¬X)
c(E) )× (A(y, 0)−A(y, 1)) if A(y, 1) 6 A(y, 0)

It’s easy to see that NormRExpr
c A(y)�E= RExpr

c(·|E) A(y), so A’s r-propriety
guarantees that it is uniquely maximized at y = c(X|E). So if this is how we do
the calculations, we get that the credence in X which the agent should adopt
in response to E is exactly what was previously her credence in X conditional
on E. In other words, the agent should conditionalize. (Since NaiveRExp and
NormRExp agree when r is multiplicative, this also establishes that, as we
claimed earlier, NaiveRExp also requires agents with multiplicative risk-profiles
to conditionalize.)

However, one might object to the use of renormalized probabilities in the
definition of NormRExp. To require that agents conditionalize just is to require
that they renormalize their credences after the possibilities inconsistent with
their evidence have been eliminated. If we build this renormalizing process into
the calculation, it is not surprising that conditionalization will come out.

It’s thus worth noting another way to solve the problem we identified for
NaiveRExp: instead of modifying the probabilities, we can rescale the risk-
function to make it sensitive to relative probabilities instead of absolute ones.
More precisely, given a risk-function r, we can define rz(x) := r(z)× r(x/z) as
the risk-function relevant to calculating restricted expected utility, where the
restriction itself has probability z. As should be clear from comparing figures 1
and 2, rz scales r from the interval [0, 1] to the smaller interval [0, z]. We can

1/2
c(O)

1

1/2

1

Figure 2: The rescaled risk function r1/2(x)

then replace r with rc(E) in NaiveRExp; this yields the following formula for
determining the risk weighted expected utility of doing A over the E states:

ScaledRExpr
c U(A)�E = rc(E)(c(E))× U(obad)

+ rc(E)(c(sgood))× (U(ogood)− U(obad)).

It’s easy to see that ScaledRExpr
c U(A)�E= r(c(E))×NormRExpr

c U(A)�E . It
follows that ScaledRExp is just as effective at solving NaiveRExp’s problem with
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non-multiplicative profiles; and also that ScaledRExp, like NormRExp, requires
agents with any risk profile to conditionalize. Yet ScaledRExp doesn’t modify
the probabilities used in NaiveRExp, and is thus arguably more neutral between
different update rules.

But does ScaledRExp really avoid the problem we raised for NormRExp,
of building in some form of renormalization and hence of conditionalization?21

We’re not sure. But it’s worth being clear about the dialectic here. NaiveRExp
is the most obvious suggestion for how to calculate restricted risk-weighted
expectations. And we have seen no reason to think it makes bad predictions for
agents with multiplicative risk-profiles, for whom it supports conditionalization.
However, it does run into problems when applied to agents with non-multiplicative
profiles. Two natural modifications of NaiveRExp that avoid these problems,
while agreeing with NaiveRExp in the cases where we’ve seen no reason to doubt
it, are ScaledRExp and NormRExp; both of these support conditionalization
regardless of the risk profile. Perhaps there are other natural modifications
to NaiveRExp that also solve the problem we identified, and which support
alternative update rules. But it’s not obvious that there are or what they look
like; and so the onus is on the opponent of conditionalization to propose one.22

We thus conclude that this first, local way of using accuracy-considerations to
determine how one should update, gives us strong prima facie reason to believe
that even risk-sensitive agents are required to conditionalize.23

21Thanks to an anonymous referee for pushing us to address this worry.
22One option would be to mimic NormRExp and propose AltRExpr

cU(A)�E= r(c∗(E))×
U(obad) + r(c∗(sgood))× (U(ogood)− U(obad)) where c∗ is the credence distribution recom-
mended by some alternative update procedure for agents with prior c and risk-profile r who
receive evidence E. Provided that c∗ is probabilisitic with c∗(E) = 1, evaluating new credences
with this formula will support the alternative update rule for the same reason that evaluating
them with NormRExp supported conditionalization. However, for a wide range of alternative
update procedures, AltRExp will be either overkill, departing from NaiveRExp even for the
non-multiplicative risk-profiles, or else fail to solve the problem faced by NaiveRExp, by failing
to makes someone’s evaluations of the partial plan to take a bet on a propositions like H
independent of the probability of being offered that bet.

23(Gallow [2019]) offers a third picture to motivate a calculation which, in the risk-neutral
setting, is very similar to that in (Leitgeb and Pettigrew [2010]). The idea is that agents
calculate expected accuracy across all worlds, including those in which E is false; however,
they use a revised accuracy measure which simply doesn’t care about accuracy in worlds in
which E is false. Formally, this is implemented by letting A be constant in these worlds.
When attempting to extend this approach to risk-weighted expectations, it matters how the
relevant constant compares to the accuracy in the various scenarios in which E is true. If the
constant is low enough for ¬E to always be the worst case scenario, this formula has the same
maximum as NaiveRExp. If, however, the constant is higher, we can get different results.
To our mind, the very fact that it matters which constant we choose suggests that this is not a
good implementation of the intuitive idea that the agent doesn’t care about accuracy in ¬E
possibilities when working with risk-sensitive agents. Absent an alternative implementation,
we thus can’t tell which belief-revision procedure is favoured by this picture.
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4 The Global Approach

In the previous section, we evaluated potential updated credences over the states
consistent with some particular piece of evidence E. There is, however, also an
alternative approach which follows (Greaves and Wallace [2006]) and does not
require us to use restricted (risk-weighted) expected utilities. On this approach,
we compare global belief revision strategies, which specify new credences for
each of the various things the agent might learn; since these specify outcomes for
every state, we can use standard (risk-weighted) expectations to compare them.

It’s worth noting that this approach, unlike the local one, really only goes
with one picture: that of an agent evaluating, before knowing what she will
learn, the different strategies for revising her credences in response to E. What
these accuracy considerations determine is thus not, in the first instance, how
the agent should update, but instead something like which updating strategy
she should consider optimal. Before zooming in on that gap, and arguing that it
can’t be bridged in the case of risk-sensitive agents, let’s look at which belief
revision strategies this approach would support. This discussion will be slightly
more technical than the remainder of the paper, so readers should feel free to
skip to section 4.2; the important take away message is that risk-sensitive agents
should almost never take conditionalization to be optimal.

4.1 Which global strategies are optimal?

We will restrict our attention to particularly simple cases, in which the agent
is guaranteed to receive as her evidence either E or ¬E.24 For a fixed prior
distribution c, we can thus represent a (global) belief revision strategy by a pair
of real numbers 〈yE , y¬E〉, specifying the credence in X that the strategy tells
agents with prior c to adopt if they learn E and ¬E, respectively.

The accuracy of an update strategy in a state is given by the following table:

State s E∧¬X ¬E∧¬X ¬E∧X E∧X
A(〈yE , y¬E〉, s) A(yE , 0) A(y¬E , 0) A(y¬E , 1) A(yE , 1)

Given the probabilities c assigns to these states, we can then calculate each
strategy’s expected or risk-weighted expected utility.

Focusing on the risk-neutral case, (Greaves and Wallace [2006]) shows:

Proposition 1. For all c probabilistic with c(E) ∈ (0, 1) and all strictly proper
accuracy measures, A,

Expc A〈c(X|E), c(X|¬E)〉 > Expc A〈yE , y¬E〉

whenever yE 6= c(X|E) or y¬E 6= c(X|¬E).

24The more general case of learning the true member of any fixed partition will involve
natural extensions of our results. We also think that the general setting won’t alter the
considerations in section 4.2.
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So conditionalization is the unique (epistemically) optimal update strategy for
risk-neutral agents.

In the risk-sensitive setting, an optimal update strategy is one that maximizes
risk-weighted expected accuracy, as evaluated by our prior c. We’ll describe
what such strategies look like, showing that they differ from conditionalization.25

To adapt the proof strategy in (Greaves and Wallace [2006]), we need to
consider a reformulation of risk-weighted expected utility theory. For A leading
to outcomes o1, . . . , on in states s1, . . . , sn with U(o1) 6 . . . 6 U(on), the risk-
weighted expected utility formula can be rearranged as:26

RExpr
c U(A) =

∑
i

((
r
(∑

j>i

c(sj)
)
− r
(∑

j>i

c(sj)
))
× U(oi)

))
In this formulation, U(oi) is multiplied by a term representing how much weight
the state si receives in the calculation. This is relative to a strict ordering ≺ of
the states (which was specified by the subscripts).27 Making this explicit, we
introduce a label for these decision weights:

d≺(s) := r
(∑
s′�s

c(s′)
)
− r
(∑
s′�s

c(s′)
)
.

In our particular case, a strategy 〈yE , y¬E〉 generates an ordering of the states,
≺, according to how A(yE , 0), A(y¬E , 0), A(y¬E , 1) and A(yE , 1) are ordered.
(We will discuss this in more detail shortly.) And if 〈yE , y¬E〉 generates ≺ we
have

RExpr
cA〈yE , y¬E〉 =

d≺(E∧X)×A(yE , 1) + d≺(E∧¬X)×A(yE , 0)

+ d≺(¬E∧X)×A(y¬E , 1) + d≺(¬E∧¬X)×A(y¬E , 0)
(1)

These d≺(s) play a special role in describing the optimal update via the
following definitions:

d≺E(X) :=
d≺(E∧X)

d≺(E∧X) + d≺(E∧¬X)

o≺E(X) :=

{
r−1(d≺E(X)) if E∧¬X ≺ E∧X
1− r−1(1− d≺E(X)) if E∧X ≺ E∧¬X

and the corresponding definitions of d≺¬E(X) and o≺¬E(X). Note that if r is
risk-neutral, o≺E(X) = c(X|E) and o≺¬E(X) = c(X|¬E).

Using this set up, we can generalize the proof strategy in (Greaves and
Wallace [2006]) to obtain (see section A.1 for the proof):

25That they differ from conditionalization also follows from a result in (Campbell-Moore and
Salow [forthcoming]), which shows that, when r is risk-avoidant, the risk-weighted expected
accuracy of sticking to one’s original beliefs is sometimes higher than that of conditionalizing
on the evidence. That result, however, tells us little about what optimal strategies look like.

26 This formulation is used in rank dependent expected utility theory; see, for example,
(Wakker [2010], ch.6).

27Note that ties can be broken either way without affecting the result.
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Proposition 2. Suppose c is probabilistic with c(E) ∈ (0, 1), and A is monotone
r-proper. Then if 〈yE , y¬E〉 generates the ordering ≺, moving yE towards o≺E(X)
or y¬E towards o≺¬E(X) or both will increase RExpr

c A〈yE , y¬E〉, so long as the
resultant strategy still generates ≺.

It’s tempting to infer that optimal strategies must always be 〈o≺E(X), o≺¬E(X)〉
for some ordering ≺. But that doesn’t follow, since the strategy 〈o≺E(X), o≺¬E(X)〉
sometimes generates an ordering other than ≺. To explain this and get more
information from proposition 2, we need to discuss in more depth when a strategy
generates an ordering ≺.

Which order (or orders) are generated by 〈yE , y¬E〉 depends on how A(yE , 0),
A(y¬E , 0), A(y¬E , 1) and A(yE , 1) compare. Assuming that A is truth-directed
and 0/1-symmetric, this is in turn determined by how yE and y¬E compare to each
other and to 1/2, the point at which A(y, 1) and A(y, 0) switch their order. For
example, if we have 1/2 < y¬E < yE , then A(yE , 0) < A(y¬E , 0) < A(y¬E , 1) <
A(yE , 1), generating the ordering of states E∧¬X ≺ ¬E∧¬X ≺ ¬E∧X ≺ E∧X.
We represent the full range of options in figure 3.

≺2

≺3

≺1≺8

≺7

≺6

≺5 ≺4

¬E∧¬X≺ E∧¬X≺ E∧X≺ ¬E∧X
1/2 6 yE 6 y¬E

E∧¬X≺ ¬E∧¬X≺ ¬E∧X≺ E∧X
1/2 6 y¬E 6 yE

0

1/2

1

0 1/2 1

value of yE

va
lu
e
o
f
y
¬
E

Figure 3: The possible strategies 〈yE , y¬E〉 and the orderings they generate.

Choices of 〈yE , y¬E〉 that fall inside the same small triangle generate the same
order and choices that fall inside different triangles generate different ones. Some
choices of 〈yE , y¬E〉, such as yE = y¬E or yE = 1/2, result in ties amongst
the resultant accuracies; these generate all of the strict orderings on states
obtained by arbitrarily breaking the ties, and equation (1) holds using any of
these orderings. In the diagram, these strategies fall on the boundaries between
triangles. As we can see from figure 3, there are eight possible orderings overall.

Now if we consider, for example, r(x) = x2 and c given by c(X|E) = 0.7,
c(X|¬E) = 0.8, and c(E) = 0.6 and focus on ≺1 arising from 1/2 6 yE 6 y¬E ,
then simple (if lengthy) calculations show that o≺1

E (X) ≈ 0.77 and o≺1

¬E(X) ≈
0.63. But this means that o≺1

E (X) > o≺1

¬E(X), hence that 〈o≺1

E (X), o≺1

¬E(X)〉
does not generate the initial ordering, ≺1, which required yE 6 y¬E . This is
illustrated in figure 4.

In cases like this, proposition 2 still tells us something about which up-
date strategies maximize risk-weighted expected accuracy from amongst those
respecting ≺: they must lie along the boundary line reached when moving
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y¬E

yE

〈o≺1
E (X), o≺1

¬E(X)〉
≈ 〈0.77, 0.63〉

Figure 4: Arrows indicate how moving yE and y¬E within the unshaded region
will increase RExpr

c A〈yE , y¬E〉.

yE towards o≺E(X) or y¬E towards o≺¬E(X). For example, in the case just
given, the best strategies from amongst those generating ≺1 must lie on the
line given by y¬E = yE , and, more specifically, on the bold line in figure 4.
Moreover, knowing that an update strategy lies on a particular boundary line
tells us quite a lot about it. For example, knowing that y¬E = yE tells us that
RExpr

c A〈yE , y¬E〉 = RExpr
c A(yE), which, by r-propriety, is uniquely maximized

at yE = c(X); so the only such strategy that could be optimal is 〈c(X), c(X)〉.
Combining proposition 2 with considerations of this kind then allows us to

say which strategies can be epistemically optimal in the risk-sensitive setting
(see section A.2 for the proof):

Theorem 3. Suppose c is probabilistic with c(E) ∈ (0, 1), and A is r-proper,
truth-directed and 0/1-symmetric. Then any optimal strategy is one of:

• 〈o≺E(X), o≺¬E(X)〉 for some ≺,

• 〈o≺2

E (X), 1/2〉 = 〈o≺3

E (X), 1/2〉 or 〈o≺6

E (X), 1/2〉 = 〈o≺7

E (X), 1/2〉,

• 〈1/2, o≺8

¬E(X)〉 = 〈1/2, o≺1

¬E(X)〉 or 〈1/2, o≺4

¬E(X)〉 = 〈1/2, o≺5

¬E(X)〉,

• 〈c(X), c(X)〉,

• 〈c(X↔E), c(X↔¬E)〉.

This result does not pin down a unique optimal strategy: given c and r,
it leaves us up to fourteen possible options. But there is little more to say at
this level of generality. As section A.3 shows, any one of these can be uniquely
optimal with the right choice of c and r. There can also be cases where two or
more of them are tied, or where different ones are optimal depending on the
particular choice of A.

Despite not pinning down a unique strategy, however, theorem 3 tells us
a lot. In particular, if r isn’t risk-neutral, none of the fourteen options will
correspond to conditionalization except in very unusual cases. It follows that,
usually, conditionalization is not optimal. In fact, since there are cases (such
as the one discussed above, as we show in section A.3) where 〈c(X), c(X)〉 is
uniquely optimal even though c(X) 6= c(X|E), conditionalization can disagree
with the optimal strategies even about whether E calls for any revision at all.
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4.2 Should we implement optimal global strategies?

As we noted at the beginning of the section this only shows that risk-sensitive
agents should consider some non-conditionalization strategy to be globally opti-
mal; it does not yet show that they should actually adopt it. The obvious way
to bridge this gap is by appeal to a principle linking previous evaluations of
strategies to rational behaviour, along the lines of:

Implementing Optimal Strategies: Agents are rationally required to imple-
ment the strategies they previously considered optimal.

Such a principle is highly non-trivial. Several philosophers have recently
argued that, from the perspective of the later agent, it’s hard to find a reason for
treating her previous evaluations with any more deference than the evaluations
of any other equally rational and well-informed stranger.28 Moreover, one might
also think that some of these strangers will consider different strategies to be
optimal, say because they are reasoning with different priors. If both of those
are right, Implementing Optimal Strategies is false.29

Moreover, in the risk-sensitive setting there is additional reason to be worried.
For we saw in section 3 that, for a risk-sensitive agent, the optimal local plan
for responding to evidence E is conditionalizing on E; section 4.1 now adds that
the optimal global strategy will prescribe a different response. Which of these –
local plans or global strategies – is the agent required to implement when she
receives E?

To resolve this question, it makes sense to consider instrumental rationality.
We can show that risk-sensitive agents definitely should not always follow through
on the instrumentally optimal global strategy. Furthermore, this argument does
not rely on the specifics of how these agents update; they can update in the
epistemically optimal way and still be rationally required not to follow through
on the instrumental strategy they initially considered optimal. This provides a
compelling reason to reject Implementing Optimal Strategies, at least as applied
to global strategies rather than local plans.

Consider an agent with the Allais preferences, rationalization of which is a
key desideratum for a risk-sensitive decision theories:

Ticket 1 Ticket 2–11 Ticket 12–100

Good & Safe $1m $1m $1m

Good & Risky $0 $5m $1m

Bad & Safe $1m $1m $0

Bad & Risky $0 $5m $0

Expected utility theory tells us that, regardless of how you value money, if you
prefer Safe to Risky in the Good case, you should prefer Safe to Risky in the

28See (Christensen [1991]; Moss [2015]; Hedden [2015]).
29Pettigrew ([2016], section 15.2) denies that the (Greaves and Wallace [2006]) argument

establishes that conditionalization is rationally required for roughly this reason.
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Bad case. But Risk-Weighted Expected Utility Theory, like other risk-sensitive
decision theories, is designed to allow the intuitive preferences of Safe over Risky
in the Good case but Risky over Safe in the Bad case.

Now suppose our Allais agent considers strategies for which lottery – Safe or
Risky – to choose once she learns whether her ticket is one of 1–11. Since Safe
and Risky are the same if the ticket is 12–100, which global strategy is optimal
doesn’t depend on what it prescribes in the 12–100 case. So the optimal strategy
matches the pre-learning preferences: after learning 1–11 she should pick Safe
over Risky in the Good case, and Risky over Safe in the Bad case. But, once
she actually learns 1–11 and updates her preferences, the decision to be made
in the Good case is the same as the decision to be made in the Bad case. So
although the optimal strategy for the Good and Bad versions of the lottery differ,
after she actually learns that it’s 1–11, her preferred options cannot depend on
whether it was Good or Bad. So at least one of her preferences has to switch;
and, when it does, she will rationally fail to follow through on the strategy she
initially preferred.

Note that this argument does not assume that the agent updates by condi-
tionalization. All that matters is that learning 1–11 has the same effect on her
credences in both the Good and Bad cases; and no one who thinks that norms
of belief revision should be sensitive only to epistemic factors, such as accuracy,
would want to deny this. The argument does assume that after learning 1–11,
the agent is rationally required to do whatever maximizes risk-weighted expected
utility with her updated credences (since otherwise the agent’s preference be-
tween Safe and Risky could be different depending on whether she started in
the Good or Bad case, even after learning 1–11). Advocates of ‘resolute choice’
would reject this assumption; but, since assessing this move in depth would take
us quite far afield, we simply note that we find it implausible.30

We conclude, then, that Implementing Optimal Strategies should be rejected
by anyone sympathetic to risk-sensitive decision theory, since it should be rejected
in the case of instrumental strategies. Is there any reason to accept its restriction
to belief-revision strategies in particular? We can think of only one. It’s tempting
to think that Implementing Optimal Strategies fails in the instrumental case
only because there is an intermediate time in the ‘implementation’ process, at
which the agent in question can re-assess her judgments about which Strategy is
optimal. In the Allais case, for example, there is some time at which the agent
has discovered whether her ticket is 1–11, but has not yet decided between Safe
and Risky; at that time, she may (and, in one of the cases, will) re-evaluate
which strategy she regards as instrumentally optimal. We could then qualify
Implementing Optimal Strategies to obtain

Implementing Stably Optimal Strategies: Agents are rationally required to
implement the strategies they previously considered optimal, unless there
is a stage between now and the point the strategy will have been fully
implemented at which they can reconsider their choices.

30See (Buchak [2013], chapter 6) for discussion and further references.
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This principle does not conflict with the Allais Preferences. And it can be
used to bridge the gap between regarding conditionalization as optimal and
being required to conditionalize if, in the epistemic case, there is no intermediate
stage between the initial evaluation and the point at which the agent needs to
adopt her final credences, so that there would be no point at which the agent’s
preferences could shift. However, it seems plausible that, at least in a rational
reconstruction of the process, there is such an intermediate stage (unless the
agent considers conditionalization optimal from the start). After all, the belief
revision strategies in question require different things depending on what the
evidence is. So a rational reconstruction of the process should feature a point
at which the agent has discovered what the evidence is, but has not yet used
this information to implement her favoured strategy. And, as we argued in
section 3, at this point the agent should always prefer conditionalizing to every
other strategy.

We thus conclude that, whilst the epistemically optimal global update strategy
diverges substantially from conditionalization, this tells us little about how a
risk-sensitive agent should update her beliefs. The gap between showing that a
global strategy is optimal and that it should be implemented is simply too large
in the risk-sensitive setting.

5 Conclusion

What do accuracy-theoretic considerations tell a risk-sensitive agent about be-
lief revision? We have seen that this depends on relatively subtle features of
how these considerations are applied: approaches that all support the same
belief-revision process in the risk-neutral setting lead to different results once
risk-sensitivity is on the table. In particular, ‘local’ approaches, which con-
sider how to respond to some particular piece of evidence tend, when properly
adapted, to support conditionalization; while ‘global’ approaches, which compare
strategies for responding to any one of a range of propositions one might learn,
will generally not. In a way, however, this divergence is unsurprising. A stan-
dard characterization of risk-sensitive decision theories is that they reject the
‘Independence Axiom’ or the ‘Sure Thing Principle’, which state, very roughly,
that if a particular option is optimal in each of a number of situations which
together exhaust all the possibilities, then that option must be optimal overall.
What we find when looking at belief revision is just a further case in which this
principle will fail: conditionalization is the accuracy-optimal response to each of
E1, . . . , En, and we know that one of these will be the evidence obtained; but,
for risk-sensitive agents, it just doesn’t follow that it is also the accuracy-optimal
global strategy.

However, we have also argued that there is, from a perspective sympathetic to
risk-sensitivity, compelling reason to reject global approaches; for risk-sensitive
agents are, quite generally, not required to stick with the (global) strategies
they previously considered optimal once new information comes in. Perhaps the
local approaches are also problematic for more general reasons that we did not

19

https://academic.oup.com/bjps
https://dx.doi.org/10.1093/bjps/axaa006


F
o
rt

h
co

m
in

g
in

th
e

B
ri

ti
sh

J
o
u

rn
a
l

fo
r

th
e

P
h
il

o
so

p
h
y

o
f

S
ci

en
ce D

raft
–

P
lea

se
cite

p
u

blish
ed

versio
n

a
va

ila
ble

h
ere.

consider here; in that case, neither kind of accuracy-theoretic argument will be
compelling for risk-sensitive agents. But if accuracy-theoretic considerations can
tell risk-sensitive agents anything, they must be of the ‘local’ type; and they
will, therefore, tell the agent to conditionalize.

Appendix A Optimal Global Strategies

We say that a strategy 〈x′E , x′¬E〉 ‘improves on’ a strategy 〈xE , x¬E〉 if

RExpr
c A〈x′E , x′¬E〉 > RExpr

c A〈xE , x¬E〉.

A strategy is thus optimal if no strategy improves on it. Note that both
improvement and optimality are relative to a fixed c and r.

A.1 Proof of Proposition 2

Recall that, if 〈yE , y¬E〉 generates ≺,

RExpr
cA〈yE , y¬E〉 =

d≺(E∧X)×A(yE , 1) + d≺(E∧¬X)×A(yE , 0)

+ d≺(¬E∧X)×A(y¬E , 1) + d≺(¬E∧¬X)×A(y¬E , 0)
(1)

We defined o≺E(X) and o≺¬E(X); we can extend them to probability functions
on {X,¬X} by setting o≺E(¬X) = 1− o≺E(X) and o≺¬E(¬X) = 1− o≺¬E(X). We
can then show that, if 〈yE , y¬E〉 generates ≺,

RExpr
o≺E
A(yE) =

d≺(E∧X)×A(yE , 1) + d≺(E∧¬X)×A(yE , 0)

d≺(E∧X) + d≺(E∧¬X)
(2)

RExpr
o≺¬E
A(y¬E) =

d≺(¬E∧X)×A(y¬E , 1) + d≺(¬E∧¬X)×A(y¬E , 0)

d≺(¬E∧X) + d≺(¬E∧¬X)
(3)

The details of the derivation depend on ≺. For example, if E∧X ≺ E∧¬X,
then by definition o≺E(X) = 1− r−1(1− d≺E(X)); so r(o≺E(¬X)) = 1− d≺E(X). If
〈yE , y¬E〉 generates ≺ with E∧X ≺ E∧¬X, we have A(yE , 1) 6 A(yE , 0), so

RExpr
o≺E
A(yE) = A(yE , 1) + r(o≺E(¬X))(A(yE , 0)−A(yE , 1))

= d≺E(X)×A(yE , 1) + (1− d≺E(X))×A(yE , 0)

=
d≺(E∧X)×A(yE , 1) + d≺(E∧¬X)×A(yE , 0)

d≺(E∧X) + d≺(E∧¬X)

Now, suppose 〈x′E , x′¬E〉 is the result of moving the yE co-ordinate from
〈xE , x¬E〉 towards o≺E(X), so that x′¬E = x¬E and either xE < x′E 6 o≺E(X)
or o≺E(X) 6 x′E < xE ; or of moving the y¬E co-ordinate towards o≺¬E(X); or
of both. Then, by monotone r-propriety, RExpr

o≺E
A(x′E) > RExpr

o≺E
A(xE) and

RExpr
o≺¬E
A(x′¬E) > RExpr

o≺¬E
A(x¬E), with at least one inequality being strict.

Thus, if both generate ≺, then by consideration of equations (1) to (3) we see
that 〈x′E , x′¬E〉 improves on 〈xE , x¬E〉.
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A.2 Proof of Theorem 3

Proposition 2 is the main result we need for this theorem. Lemma 4 is a simple
consequence of it, which, together with lemma 5, suffices for our result.

Lemma 4. If 〈yE , y¬E〉 is optimal, then either it is one of:

• 〈o≺E(X), o≺¬E(X)〉 for some ≺,

• 〈o≺2

E (X), 1/2〉 = 〈o≺3

E (X), 1/2〉 or 〈o≺6

E (X), 1/2〉 = 〈o≺7

E (X), 1/2〉.

• 〈1/2, o≺8

¬E(X)〉 = 〈1/2, o≺1

¬E(X)〉 or 〈1/2, o≺4

¬E(X)〉 = 〈1/2, o≺5

¬E(X)〉

or yE = y¬E or yE = 1− y¬E.

Proof. It is easy to check the equalities in the statement by showing that the
corresponding d≺ are equal. For example to show 〈o≺2

E (X), 1/2〉 = 〈o≺3

E (X), 1/2〉,
we note that, for both ≺2 and ≺3,

d≺(E∧X) = r(c(E∧X))

d≺(E∧¬X) = 1− r(1− c(E∧¬X))

We now argue that an optimal strategy satisfies the disjunction, by arguing
that any given 〈xE , x¬E〉 failing to satisfy the disjunction can be improved on.
The choice of improving strategy depends on the orders generated by 〈xE , x¬E〉
and 〈o≺E(X), o≺¬E(X)〉, where ≺ is an order generated by 〈xE , x¬E〉. We list the
improving strategies assuming that 〈o≺E(X), o≺¬E(X)〉 generates ≺1; the other
situations are analogous. As illustrated in figure 5, one can verify that in each
case the improving strategy generates the same order as 〈xE , x¬E〉, and results
from moving xE towards o≺E(X), x¬E towards o≺¬E(X), or both; it thus improves
on 〈xE , x¬E〉 by proposition 2.

If 〈xE , x¬E〉 generates then 〈xE , x¬E〉 can be improved on by

≺1 〈o≺1

E (X), o≺1

¬E(X)〉

≺2
if xE > o≺2

E (X), then 〈x¬E , x¬E〉
otherwise 〈o≺2

E (X), o≺2

E (X)〉
≺3 〈o≺3

E (X), 1/2〉
≺4 〈xE , 1− xE〉

≺5 or ≺6 〈1/2, 1/2〉
≺7 〈x¬E , 1− x¬E〉
≺8 〈1/2, o≺8

¬E(X)〉

Lemma 5.

• 〈c(X), c(X)〉 improves on any other strategy with yE = y¬E.

• 〈c(X↔E), c(X↔¬E)〉 improves on any other strategy with yE = 1− y¬E.
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≺1 ≺2 ≺3,≺8 ≺4,≺5,≺6,≺7

y¬E

yE

≺2

≺3

≺8

≺7

≺6

≺5 ≺4

Figure 5: How to improve 〈xE , x¬E〉 in line with proposition 2.

Proof. If yE = y¬E , RExpr
c A〈yE , y¬E〉 = RExpr

c A(yE); which, by r-propriety,
is uniquely maximized at yE = c(X).

Now suppose yE = 1 − y¬E . Since A is 0/1-symmetric, there are just
two possible outcomes: A(yE , 1) = A(y¬E , 0) (with c(E∧X) + c(¬E∧¬X) =
c(X↔E)), or A(yE , 0) = A(y¬E , 1). Consider some probability function b
with b(X) = c(X ↔ E); then RExpr

c A〈yE , y¬E〉 = RExpr
b A(yE), which, by

r-propriety, is uniquely maximized at yE = b(X) = c(X↔E); thus y¬E =
1− c(X↔E) = c(X↔¬E).

A.3 Examples

Theorem 3 leaves fourteen options for what an optimal update can look like. For
each of these, there is a choice of r and c such that it is uniquely optimal. These
choices work for any truth directed, 0/1-symmetric and monotone r-proper A.

Example 6. For c(X|E) = 0.7, c(X|¬E) = 0.95, c(E) = 0.5 and r(x) = x2,
〈o≺1

E (X), o≺1

¬E(X)〉 is uniquely optimal.

Proof. We start by plotting 〈o≺E(X), o≺¬E(X)〉 for all eight orderings in figure 6.

y¬E

yE

≺2

≺3

≺1

≺8

≺7

≺6

≺5 ≺4

Figure 6: Plotting the 〈o≺E(X), o≺¬E(X)〉 corresponding to each ≺ for example 6.

This graph shows that all eight points generate ≺1. As we’ll show, it follows
that 〈o≺1

E (X), o≺1

¬E(X)〉 is uniquely optimal.
The reasoning in lemma 4 shows that, if 〈o≺E(X), o≺¬E(X)〉 doesn’t generate ≺,

then strategies generating≺ are always improved on by strategies on the boundary

22

https://academic.oup.com/bjps
https://dx.doi.org/10.1093/bjps/axaa006


F
or

th
co

m
in

g
in

th
e

B
ri

ti
sh

J
ou

rn
a
l

fo
r

th
e

P
h

il
os

op
h
y

of
S

ci
en

ce D
raft

–
P

lea
se

cite
p

u
b

lish
ed

v
ersio

n
ava

ila
b

le
h

ere.

of that region in the direction of 〈o≺E(X), o≺¬E(X)〉 – unless they themselves lie
on that boundary (a qualification we leave implicit in the following).

Consider, then, an update strategy generating ≺3. This strategy is improved
on by something on the ≺3 / ≺2 boundary. But that improved strategy will
also generate ≺2. So, because 〈o≺2

E (X), o≺2

¬E(X)〉 generates ≺1, this will be
improved on by something on the ≺2 / ≺1 boundary. But such a strategy also
generates ≺1; so proposition 2 implies that 〈o≺1

E (X), o≺1

¬E(X)〉 will improve on
it. So 〈o≺1

E (X), o≺1

¬E(X)〉 improves on any strategy generating ≺3

The same argument can be run for update strategies generating any of the
other orderings, following the arrows in figure 6. So 〈o≺1

E (X), o≺1

¬E(X)〉 is uniquely
optimal.

Example 7. For c(X|E) = 0.7, c(X|¬E) = 0.8, c(E) = 0.5 and r(x) = x2,
〈c(X), c(X)〉 is uniquely optimal.

Proof. Again, we begin by plotting 〈o≺E(X), o≺¬E(X)〉 for the various orderings
(figure 7).

y¬E

yE

〈o≺1
E (X), o≺1

¬E(X)〉

〈o≺2
E (X), o≺2

¬E(X)〉

Figure 7: Plotting the 〈o≺E(X), o≺¬E(X)〉 corresponding to each ≺ for example 7.

Note that all the 〈o≺E(X), o≺¬E(X)〉 generate either ≺1 or ≺2. So, by the reasoning
used in example 6, any optimal strategy must also generate one of these.

Note also that 〈o≺1

E (X), o≺1

¬E(X)〉 generates ≺2 and that 〈o≺2

E (X), o≺2

¬E(X)〉
generates ≺1. It follows that any optimal strategy generating either ≺1 or ≺2

must fall on the line between them, and hence have yE = y¬E . By lemma 5, the
only such strategy that can be optimal is 〈c(X), c(X)〉.

Similar reasoning shows that each of the other options is uniquely optimal in
the cases outlined in table 1.

These examples are quite robust. For example, it’s possible to show that for
any differentiable risk profile with r(x) < x, there will be cases like example 7,
where the uniquely optimal strategy is not to alter one’s beliefs in light of
conditionally relevant evidence. This establishes what we asserted without proof
in Campbell-Moore and Salow (forthcoming, footnote 29).

To show this, one argues that choosing d≺¬E(X) > 1 − r(1/2), d≺E(X) =
r−1(d≺¬E(X)), and c(E) sufficiently close to 1, yields a situation analogous to
example 7: 〈o≺E(X), o≺¬E(X)〉 all generate ≺1 or ≺2, and 〈o≺1

E (X), o≺1

¬E(X)〉
generates ≺2 and visa versa. Since the argument is quite involved, we omit it
here. Readers wishing to reconstruct it might find it helpful to look at the proof
of Theorem 5 in Campbell-Moore and Salow (forthcoming).
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optimal r(x) c(X|E) c(X|¬E) c(E)

〈o≺1

E (X), o≺1

¬E(X)〉 x2 0.7 0.95 0.5

〈o≺2

E (X), o≺2

¬E(X)〉 x2 0.95 0.7 0.5

〈o≺3

E (X), o≺3

¬E(X)〉 x2 0.95 0.3 0.5

〈o≺4

E (X), o≺4

¬E(X)〉 x2 0.7 0.05 0.5

〈o≺5

E (X), o≺5

¬E(X)〉 x2 0.3 0.05 0.5

〈o≺6

E (X), o≺6

¬E(X)〉 x2 0.05 0.3 0.5

〈o≺7

E (X), o≺7

¬E(X)〉 x2 0.3 0.05 0.5

〈o≺8

E (X), o≺8

¬E(X)〉 x2 0.3 0.95 0.5

〈c(X), c(X)〉 x2 0.7 0.8 0.5

〈c(X↔E), c(X↔¬E)〉 x2 0.7 0.2 0.5

〈o≺2

E (X), 1/2〉
√
x 0.8 0.5 0.5

〈o≺6

E (X), 1/2〉
√
x 0.2 0.5 0.5

〈1/2, o≺4

¬E(X)〉
√
x 0.5 0.8 0.5

〈1/2, o≺8

¬E(X)〉
√
x 0.5 0.2 0.5

Table 1: Choices of r and c for which the various options left open by theorem 3
are uniquely optimal
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