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Believing Probabilistic Contents:

On the Expressive Power and Coherence of Sets

of Sets of Probabilities

Catrin Campbell-Moore and Jason Konek

November 27, 2019

Moss (2018) argues that rational agents are best thought of not as having
degrees of belief in various propositions. Instead, they are best thought of
as having beliefs in probabilistic contents, or probabilistic beliefs. Probabilistic
contents are sets of probability functions. Probabilistic belief states, in turn,
are modeled by sets of probabilistic contents, or sets of sets of probability
functions. We argue that this Mossean framework is of considerable interest
quite independently of its role in Moss’ account of probabilistic knowledge or
her semantics for epistemic modals and probability operators. It is an extremely
general model of uncertainty. Indeed, it is at least as general and expressively
powerful as every other current imprecise probability framework, including lower
probabilities, lower previsions, sets of probabilities, sets of desirable gambles, and
choice functions. In addition, we partially answer an important question that
Moss leaves open, viz., why should rational agents have consistent probabilistic
beliefs? We show that an important subclass of Mossean believers avoid Dutch
bookability iff they have consistent probabilistic beliefs.

1 The Mossean Framework

On the traditional Bayesian view, rational agents do not simply categorically
believe or disbelieve propositions. Rather, they have degrees of belief or credences
in those propositions. For example, rather than categorically believing that you
will make it through security at the airport in under 30 minutes, you might
be 0.9 confident that you will make it. Having a degree of belief, on this view,
is a matter of taking a complex attitude—0.9 confidence—toward a simple
possible-worlds proposition: something that is either true or false at a world.1

Moss agrees that rational agents do not just categorically believe or disbelieve
simple possible-worlds propositions. But on the Mossean view, they do not bear
complex attitudes toward those propositions either. Rather, they bear a simple
attitude toward a complex content. More specifically, they believe probabilistic
contents, which, formally, is a set of probability functions, p : F → R, where F is
a σ-algebra on a domain of possibilities Ω.2Moss calls such attitudes probabilistic
beliefs.

1For a detailed introduction to precise and imprecise credences, see Titelbaum (2019),
Mahtani (2019) and Konek (2019).

2In fact, Moss takes probabilistic contents to be sets of probability spaces. A probability
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This framework allows us to model our opinions in a natural way. For
example, you might think that it is more likely to rain than not. What you
think expresses a constraint on probabilities, viz., that the probability of rain is
greater than the probability of no rain: p(Rain) > p(No Rain). And on Moss’s
view, we model your opinion by saying that you believe the probabilistic content

{p | p(Rain) > p(No Rain)} .

We can model your opinion that the Greenland ice sheet is between 60% and
80% likely to melt by saying that you believe the probabilistic content

{p | 0.6 6 p(Greenland ice sheet melts) 6 0.8} .

We can model your opinion that the recent downturn in the stock market provides
no evidence one way or the other about whether dinosaurs were wiped out by
asteroids by saying that you believe the probabilistic content

{p | p(Dinos-asteroids |Stocks down) = p(Dinos-asteroids)} .

Finally, we model your total doxastic state by collecting all of the probabilistic
contents that you believe into a big set: a set of probabilistic contents, or a set
of sets of probability functions.

Moss provides a number of reasons to prefer this framework to the traditional
Bayesian framework where you model an agent’s credences in simple possible-
worlds propositions by either a single probability function (if the agent has precise
credences) or a set of probability functions (if she has imprecise credences). For
example, it seems irrational to both be 80% confident that it will rain tonight
and 80% confident that it will not. Proponents of the Mossean framework can
tell a simple story about why this is so. Being 80% confident that it will rain
tonight is simply a matter of believing the probabilistic content

PR = {p | p(Rain) = 0.8}

Likewise, being 80% confident that it will not rain tonight is a matter of believing
the probabilistic content

PN = {p | p(¬Rain) = 0.8}

But these two contents are inconsistent. They are inconsistent because they are
disjoint sets of probabilities: PR ∩ PN = ∅. And plausibly it is irrational to
believe inconsistent contents (Moss, 2018, p. 11, this is something we will revisit in
section 3). On the traditional Bayesian account, in contrast, we must explain why
having a credence of 0.8 in a proposition and its negation is irrational by telling
some more complicated, perhaps more controversial story—e.g., by showing that
having such credences renders you Dutch bookable (see, e.g., Pettigrew, 2019),
or accuracy-dominated (Joyce, 1998, 2009; Pettigrew, 2019), etc.

Proponents of the Mossean framework can also tell a simply story about
apparent ordinary language quantification over contents (Moss, 2018, p. 12). For
example, suppose that we both think that the Greenland ice sheet is between

space is a triple consisting of a domain of possibilities Ω, a σ-algebra F on Ω, and a probability
measure p on F . We will assume a fixed finite domain Ω and σ-algebra F in what follows.
This also means we do not have to deal with issues of countable vs finite additivity.

2

https://doi.org/10.1093/analys/anz076


F
in

al
ve

rs
io

n
is

in
A

n
al

y
si

s
R

ev
ie

w
s

(h
er

e)
P
rep

rint
N

ovem
b

er
2
7
,

2
0
1
9

60% and 90% likely to melt. Then after a little research you come to think that
it is between 70% and 80% likely. It is natural to say that you have come to
believe something that I do not. Proponents of the Mossean framework can
explain this by saying that you have come to believe the probabilistic content

{p | 0.7 6 p(Greenland ice sheet melts) 6 0.8}

I have not. On the traditional Bayesian account, in contrast, we must say that
this sort of quantified claim is elliptical for the claim that you have adopted a
new imprecise credal attitude toward a simple possible-words proposition—the
Greenland ice sheet will melt—which I have not adopted.

2 Comparison with other Imprecise Probability
Frameworks

Whether or not you are swayed by these considerations, there is good independent
reason to explore the Mossean framework. Sets of probabilistic contents, or sets
of sets of probabilities provide an extremely general model of uncertainty. Indeed,
the Mossean framework is at least as general and expressively powerful as every
other current imprecise probability framework, including lower probabilities,
lower previsions, sets of probabilities, sets of desirable gambles, and choice
functions. Drawing on the work of Walley (2000), Seidenfeld et al. (2010),
Quaeghebeur et al. (2015), De Bock and de Cooman (2018) and Van Camp and
Miranda (2019) we can rank these frameworks in order of increasing generality:

Coherent lower and upper probabilities

Coherent lower and upper previsions / Closed convex sets of probabilities

Coherent sets of desirable gambles / Partial preference relations

Coherent sets of desirable gamble sets / Choice functions

Moss’s framework: Sets of sets of probabilities

2.1 Lower and upper probabilities

Let’s begin with lower and upper probabilities. An agent’s lower and upper
probabilities do not encode precise degrees of confidence or credence. Rather,
they encode the agent’s minimum and maximum degrees of confidence. For
example, rather than being exactly 70% confident that you will make it through
security at the airport in under 30 minutes, you might be at least 50% and at
most 90% confident. If there is nothing stronger to about how confident you are,
then your lower probability that you will make it through in under 30 minutes
is 0.5 and your upper probability is 0.9.

We can model these lower and upper probabilities by a pair of functions,
p : F → R and p : F → R. In our example, we have

p(Make it in under 30 min) = 0.5, p(Make it in under 30 min) = 0.9.

3
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We call lower and upper probabilities coherent iff they are given by a set of
probabilities, P (Walley, 1991, p. 135):3

p(X) = inf {p(X) | p ∈ P} , p(X) = sup {p(X) | p ∈ P}

These probabilities provide a more general model of uncertainty than precise
probabilities. But they nevertheless fail to capture various types of opinions
that are important for inference and decision-making. For example, they cannot
capture comparative beliefs (Walley, 2000, p. 130). Comparative beliefs are
opinions of the form X is at least as likely as Y, which we write as X < Y .
(Strictly speaking, these are weak comparative beliefs. See section 2.2.) To
illustrate, suppose that you have the following comparative beliefs about whether
your favourite team will win, draw or lose the upcoming match.

Lose ∨Draw < Win < Draw < Lose

The maximum and minimum levels of confidence consistent with these compara-
tive beliefs are given by:

Lose ∨Draw Win Draw Lose

p 2/3 1/2 1/2 1/3
p 1/2 1/3 1/4 0

Notice though that p and p leave open whether Win is more likely than Draw, or
Draw is more likely than Lose. For example, the following probability function
is consistent with the constraints given by p and p:

Lose ∨Draw Win Draw Lose

q 2/3 1/3 1/2 1/6

According to q, Win is less likely than Draw. The upshot: comparative be-
liefs cannot in general be recovered from their corresponding lower and upper
probabilities. These are thus not sufficiently expressively powerful to model
comparative beliefs.

The Mossean framework, in contrast, is powerful enough to model both
coherent lower and upper probabilities, as well as comparative beliefs. You have
the coherent lower and upper probabilities, p and p, in this framework, just in
case for all X ∈ F you believe{

p | p(X) 6 p(X) 6 p(X)
}

and you do not believe any other probabilistic contents which would determine
a narrower interval.4 You have the comparative beliefs given by < just in case

X < Y iff you believe {p | p(X) > p(Y )} .
3 However, different sets of probabilities can give rise to the same lower and upper proba-

bilities: sections 2.2 and 2.3 note that lower probabilities cannot capture weak comparative
beliefs but sets of probabilities can. (See also Walley, 2000, §4-5.)

4I.e. you do not believe any Q such that Q(X) := inf {q(X) | q ∈ Q} > p(X), or Q(X) :=
sup {q(X) | q ∈ Q} < p(X).
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2.2 Lower and upper previsions /
Closed convex sets of probabilities

The expressive limitations of lower and upper probabilities motivated proponents
of imprecise probabilities to move to a more general framework: lower and upper
previsions. Linear previsions are precise estimates of quantities of interest. For
example, your prevision or estimate of the price of a given stock 12 months hence
might be £220 per share. Lower and upper previsions capture bounds on best
estimates. For example, you might think that the best estimate of the price of
the stock in question is at least £150 and at most £300 per share. If there is
nothing stronger to say about how high or low you think that best estimate is,
then these are your lower and upper previsions.

Lower and upper previsions are given by a pair of functions est : G → R and
est : G → R defined on the space G of all gambles which are bounded functions
G : Ω→ R.

Coherence constraints are given on lower and upper previsions, which makes
them equivalent to closed convex sets of probabilities (Walley, 2000, p. 133).
The coherent lower and upper previsions given by a set of probabilities, P , are

est(G) = inf
{

Expp[G] | p ∈ P
}
, est(G) = sup

{
Expp[G] | p ∈ P

}
And for each coherent lower and upper previsions there is a unique such closed
and convex set of probabilities.

These provide a more general model of uncertainty than lower and upper
probabilities.5 For example, they are general enough to capture comparative
beliefs. You have the comparative beliefs given by < just in case for all X,Y ∈ F6

X < Y iff est(X − Y ) > 0

But lower and upper previsions are still not general enough. They fail to capture
some important types of opinions. We have focussed thus far on weak comparative
beliefs, i.e., opinions of the form X is at least as likely as Y (X < Y ). But
rational agents also have strict comparative beliefs, i.e., opinions of the form X is
strictly likelier than Y (X � Y ). Lower and upper previsions cannot distinguish
weak comparative beliefs from strict comparative beliefs (Walley, 2000, p. 135).

On the face of it, they seem to have the flexibility to distinguish between
weak and strict comparative beliefs. Why not say, for example, that

X < Y iff est(X − Y ) > 0 and X � Y iff est(X − Y ) > 0.

To see why this proposal will not work, consider the following example.
Suppose that you are throwing darts, and suppose that your next dart is equally
likely to hit each of the uncountably many points on the dartboard. Consider
the proposition that it will hit the point-sized bullseye, B, and the proposition
that it will hit exactly the line-sized edge of the inner and outer ring, E. You
think that E is strictly more likely than B, E � B; but there is no amount by
which it is more likely: it is not 0.1 more likely, or 0.01, or any positive real.
Since you will thus have est(E−B) < ε for all positive reals, ε > 0, the structure

5We can capture any lower probability function by a lower prevision function restricted to
indicator variables.

6Here we identify X with its indicator gamble.
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of the reals will require that est(E − B) = 0. Thus, your strict comparative
opinion cannot be captured by your lower and upper previsions.

The Mossean framework is powerful enough to model both coherent lower
and upper previsions, as well as weak and strict comparative beliefs. You have
the lower and upper previsions given by est and est, in Moss’ framework, just in
case for all G you believe{

p | est(G) 6 Expp[G] 6 est(G)
}

and you do not believe any other probabilistic content which would determine a
narrower interval.

Moss’s framework can also capture both weak comparative beliefs (section 2.1)
and strict comparative beliefs. You have the strict comparative beliefs given by
� just in case

X � Y iff you believe {p | p(X) > p(Y )} .

In the darts example, you have the strict comparative belief E � B by virtue
of believing that E is more likely than B but not by any positive amount. So
you believe {p | p(E) > p(B)} but also {p | p(E)− p(B) < ε} for each ε > 0. In
this example you have infinitesimal probability in both E and B:

you believe {p | p(X) > 0} and for every ε > 0 you believe {p | p(X) < ε} .

Note, though, that this collection of beliefs is infinitely inconsistent: no (real-
valued) probability function is compatible with everything that you believe.

2.3 Sets of desirable gambles

The expressive limitations of lower and upper previsions motivated the shift to
sets of desirable gambles (Walley, 2000, §6). An agent’s desirable gamble set D
rounds up all of the gambles G that she strictly prefers to the status quo—the
constant gamble 0 that takes the value 0 at every world w ∈ Ω.

Sets of desirable gambles provide a more general model of uncertainty than
coherent lower and upper previsions. For example, sets of desirable gambles are
general enough to capture both weak and strict comparative beliefs by:7

X � Y iff X − Y ∈ D.
X < Y iff X − Y + ε ∈ D for all ε > 0.

A set of desirable gambles D is said to be coherent iff it satisfies:

1. 0 6∈ D
2. If G(w) > 0 for all w ∈ Ω, and G(w) > 0 for some w ∈ Ω, then G ∈ D.8

3. If G ∈ D and λ > 0, then λG ∈ D
4. If F,G ∈ D, then F +G ∈ D
7As Walley (1991, p. 151) notes, sets of desirable gambles are equivalent to partial preference

relations, or comparative prevision/estimation relations. These latter models are more general
than comparative belief relations.

8We think this axiom is too strong. We conjecture that we can still show representability
when we replace it with the two axioms: If G(w) > 0 for all w ∈ Ω, then G ∈ D. If G ∈ D and
F (w) > G(w) for all w ∈ Ω, then F ∈ D. And that this corresponds to dropping axiom 4. for
probabilistic beliefs.
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Once again, the Mossean framework is powerful enough to model coherent sets
of desirable gambles. Probabilistic beliefs determine a set of desirable gambles
by:

G ∈ D iff you believe
{
p | Expp[G] > 0

}
and every coherent set of desirable gambles is generated by some probabilistic
beliefs.9 We can ensure that the resultant set of desirable gambles is coherent if
your probabilistic beliefs satisfy:

1. You believe Ω and do not believe ∅.
2. If you believe P and Q then you believe P ∩Q.
3. If you believe P and Q ⊇ P then you believe Q.
4. For each w ∈ Ω, you believe {p | p(w) > 0}.10

So the Mossean framework is at least as general as coherent sets of desirable
gambles. But once again sets of desirable gambles are not general enough. For
example, coherent sets of desirable gambles are incapable of capturing the types
of opinions modelable by non-convex sets of probability functions. Consider an
example from (Van Camp and Miranda, 2019, p. 419). Suppose you know that
a coin is double-sided but have no idea whether it has two heads or two tails.
The gambles that are desirable to you are just those that have positive payout
if it lands heads and positive payouts if it lands tails. I.e. your set of desirable
gambles is just

D = {G | G(Heads) > 0 and G(Tails) > 0} .

But this is exactly the same set as someone who has no information about
the bias of the coin. So sets of desirable gambles fail to distinguish between
importantly distinct doxastic states.

The Mossean framework handles this example straightforwardly: You believe
the non-convex probabilistic content

{p | p(Heads) = 1 or p(Tails) = 1} .

2.4 Sets of desirable gamble sets / Choice functions

Limitations of this sort spurred Seidenfeld et al. (2010), De Bock and de Cooman
(2018), and Van Camp and Miranda (2019) to adopt an even more general model
of uncertainty: sets of desirable gamble sets, or equivalently, choice functions
or rejection functions.11 These are the most general models of uncertainty
currently under investigation in the imprecise probability community. They can
represent any set of probabilities, including non-convex ones,12 as well as any
set of desirable gambles.

To see the expressive power of this new framework, consider the following
gambles:

9 Suppose D is coherent and G /∈ D. Use the hyperplane separation theorem to show that
for each F1, . . . , Fn ∈ D we can find probabilistic p with Expp[Fi] > 0 and Expp[G] 6 0. So
we can find probabilistic beliefs (indeed, ones satisfying the principles stated) that generate D.

10This is required to satisfy axiom 2.
11Choice or rejection functions choose, for each collection of gambles, a subset of the

better/worse gambles in the set. This is equivalent to sets of desirable gamble sets. (De Bock
and de Cooman, 2018)

12See Seidenfeld et al. (2010, Theorem 2).
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Heads Tails

GH £1 −£10
GT −£10 £1

If you knew the coin has two heads, then GH would be desirable. If you knew it
had two tails, then GT would be desirable. If you know that it is double-sided,
then although neither of these individual gambles is desirable, you know that the
collection of gambles {GH , GT } contains at least one desirable gamble. Someone
who knows nothing about the coin will not think that this necessarily contains a
desirable gamble, for example, if the coin is fair then neither of the gambles is
desirable.

We therefore model your doxastic state with a set of desirable gamble sets, K,
which rounds up all of the set of gambles A that contain at least one desirable
gamble G.

Beliefs in probabilistic contents determine a set of desirable gamble sets by:

A ∈ K iff you believe
{
p | Expp[G] > 0 for some G ∈ A

}
.

We say a set of desirable gamble sets is coherent if:

1. ∅ 6∈ K
2. A ∈ K then A \ {0} ∈ K.
3. If G(w) > 0 for all w ∈ Ω, and G(w) > 0 for some w ∈ Ω, then {G} ∈ K.13

4. If A,B ∈ K, and λG,F , µG,F > 0 with at least one > 0, then

{λG,FG+ µG,FF | G ∈ A, F ∈ B} ∈ K

5. If A ∈ K and B ⊇ A, then B ∈ K.
6. If the closed convex hull of A is ∈ K, then A ∈ K.14

Any coherent set of desirable gamble sets can be recovered from probabilistic
beliefs satisfying our conditions in section 2.3.15 Moreover, any probabilistic
beliefs satisfying those conditions generate a coherent set of desirable gamble
sets.

The Mossean framework can also capture some believers who are not repre-
sented in the set of desirable gamble sets framework. Imagine, for example, that
you are throwing darts on a board with a special line-sized “bonus ring.” Hitting
the ring wins the game automatically. But it is only in play at certain times.
The Mossean framework can distinguish between someone who believes that the
probability of hitting the ring and winning automatically is 0 and someone who
leaves open whether it is 0 or infinitesimal. The set of desirable gamble sets
framework cannot.16

We have thus seen that Moss’s framework provides a very natural and
expressively powerful model of uncertainty.

13As in footnote 8, we think this should be replaced with weaker axioms and conjecture that
representability still holds.

14This final axiom is not included in De Bock and de Cooman (2018). It is analogous to
Axiom 2b from Seidenfeld et al. (2010), and it is needed for the representation by probabilistic
beliefs.

15This requires the additional mixtures axiom 6..
16 This is so even when axiom 4. is weakened. Extensions of the desirability framework,

though, will probably be able to deal with it.
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3 Consistency

One important project in epistemology is to determine what it takes for your
probabilistic beliefs to be rational or irrational. Now that we have an alternative
framework for representing your doxastic state, we have to reconsider these
questions. Moss can say quite a lot about rationality if she can make use of the
following norm:

Consistency Norm: It is irrational to have beliefs whose probabilistic
contents are inconsistent.

This identifies a whole class of Mossean believers as irrational. Moss proposes
that this is an advantage of her account: it can explain the irrationality of your
probabilistic beliefs directly in terms of the contents of your beliefs rather than
the traditional Bayesian approach which would have to give a story in terms of,
e.g., Dutch book or accuracy-based arguments.

However, more needs to be done to justify the consistency norm: Is it
irrational to believe inconsistent probabilistic contents? If so, why? Easwaran
and Fitelson (2015) provide us with a cautionary tale in the case of full beliefs
towards simple possible-worlds propositions. They argue that plausible normative
principles only justify a coherence constraint that is weaker than the consistency
norm. The same might hold for Moss’s framework too. Moreover, in representing
your opinions regarding the dart hitting a point-sized bullseye we represented her
as having inconsistent probabilistic beliefs and it wasn’t obviously irrational.17

To attempt to justify the Consistency Norm, we will turn to the sorts of
resources that are given for justifying probabilism for the traditional Bayesian
epistemologist. In particular we will consider Dutch book style arguments.18

Consider a concrete case: suppose someone thinks both that it’s 80% likely
to rain tomorrow and that it’s 80% likely not to rain tomorrow, i.e. she holds
the following two probabilistic beliefs:

PR = {p | p(Rain) = 0.8}
PN = {p | p(¬Rain) = 0.8}

Her beliefs are inconsistent, and the consistency norm tells us that she is thus
irrational. But what is it that makes her irrational? Why is it bad for her to
have such inconsistent probabilistic beliefs? Here is one answer: she is Dutch
bookable. Consider the gambles with the following pay-outs:

Rain No rain

GR 90p −£1.10
GN −£1.10 90p

Total −20p −20p

17Moss might maintain infinite consistency by expanding the underlying space to include
infinitesimal probabilities. The point, though, is that we ought to provide rigorous justifications
for coherence norms like the Consistency Norm.

18Whilst we think that the accuracy-based approach is ultimately the way that we should
go, a lot of work needs to be done to determine how accuracy applies when your total doxastic
state is modelled by beliefs towards probabilistic contents. This will combine work on accuracy
for imprecise probability Konek (ms) with accuracy for full-beliefs (Easwaran and Fitelson,
2015). So, whilst we think that that is a good way of going, we leave it for future work.
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Her belief in PR makes her desire GR, and her belief in PN makes her desire
GN , but taken together, this would result in a guaranteed loss. This sort of
phenomena is, it is claimed in the Dutch book discussions, enough to show
irrationality.

We can summarise our attempted argument for the Consistency Norm as
follows:

• Definition: For a gamble G, a bounded function from Ω to R, if you believe
probabilistic contents P and every p ∈ P has Expp[G] > 0, then G is
desirable.

• Definition: Someone is Dutch bookable if there is a finite collection of
gambles G1 . . . Gn, such that each Gi is desirable, but the combined result
of taking all the Gi is a guaranteed loss; i.e. for all w ∈ Ω,

∑
iGi(w) < 0.

• Premise: It is irrational to be Dutch bookable.

• Desired Theorem: If someone has inconsistent probabilistic beliefs, they
are Dutch bookable. [This has to be slightly weakened]

∴ Conclusion: The Consistency Norm. It is irrational to have beliefs whose
probabilistic contents are inconsistent.
[Given the weakening of Theorem, our conclusion will be slightly weaker]

Whilst there are debates in the literature about the plausibility of the premise
linking Dutch bookability to irrationality, we nonetheless think it is progress if
we are able to provide a Dutch book argument for the consistency norm.

This argument still hangs on what we labelled as a ‘desired theorem’: in-
consistency entails Dutch bookability. In fact this this theorem does not hold
in general. But it does hold in the special case where finitely many of your
probabilistic beliefs in closed and convex sets of probabilities are inconsistent.
More generally:

Theorem 1. If you have some finite collection of probabilistic beliefs whose
closed convex hulls are jointly inconsistent, then you are Dutch bookable.19

And conversely, if there is no such finite inconsistency in the closed convex
hulls of your beliefs, then you are not Dutch bookable.

This will provide an argument for a norm that is weaker than the consistency
norm. For example, suppose you believe that two coins are probabilistically inde-
pendent whilst simultaneously believing that they’re probabilistically dependent.
Your probabilistic beliefs have inconsistent probabilistic contents, but this isn’t
enough to give Dutch bookability because neither of these beliefs commits you
to any non-trivial desirability of gambles.

We might be able to obtain something slightly stronger by weakening our
notion of Dutch bookability. For example, it is plausibly irrational to judge
a collection of gambles which are guaranteed to pay out the status quo to be
(strictly) desirable. Suppose that you believe that your train is both more likely
than not to be on time (probability > 1/2) and also less likely than not to be
on time (probability < 1/2). Then you are Dutch bookable in this weaker sense.

19The closed convex hull of a set of probabilities is the smallest closed and convex set
containing it.
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Whatever norm this weaker notion of Dutch bookability vindicates, it will fall
short of the full consistency norm that Moss identifies due to cases like the two
coin probabilistic dependence example above.20

The results here represent significant progress towards justifying the Consis-
tency Norm. We have shown that a large class of failures of consistency result
in Dutch bookability, and can thus be deemed irrational.

4 Conclusion

We have argued that Moss’s framework provides a very natural and expressively
powerful model of uncertainty. It is at least as general as sets of desirable gamble
sets (or equivalently choice/rejection functions)—the most general model of
uncertainty currently under investigation in the imprecise probability community.
We have also made some progress towards justifying Moss’s Consistency Norm.
We have shown that a large range of failures of consistency will lead you to be
Dutch bookable. In particular, these failures are when the closed and convex
hull of your beliefs are finitely inconsistent.
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A Proof of the Dutch book result

We assume that Ω is finite.21

Theorem 2. If you have some finite collection of probabilistic beliefs in closed
and convex sets of probabilities which are jointly inconsistent, then you are Dutch
bookable.

Proof. We consider probabilities as vectors in RΩ, i.e. p : Ω → R,22 and use
norms and dot-product as expected.

Lemma 3. We can choose some e so that for bi the closest in Pi to e, e =
∑

i bi
n .23

Moreover, by possibly ignoring some of the initial Pis, we can do this so that
e /∈ Pi for any Pi.

Proof. Note first, that for any collection b1, . . . , bn,
∑n

i=1
‖e−bi‖2

n is minimized

by e =
∑

ibi
n . But we cannot simply choose our bi and define e this way because

we needed to show that e is in an average of the bi which are chosen as the
members of Pi minimizing the distance between e and itself.

So, we specify e to be what minimizes
∑

i‖e−closest(e, Pi)‖2, where closest(e, Pi) =
arg minbi∈Pi

‖bi − e‖. Since Pi is convex and closed, there will be a unique such

minimum. We can then show that taking bi = closest(e, Pi), we have e =

∑
ibi
n .

To ensure that e /∈ Pi, we note that we can delete any Pj with e ∈ Pj from
consideration and we will still have e is the average of the remaining bi because
if e ∈ Pj then e = bj .

24

21This is for mathematical convenience, the results might be generalisable. Note it suffices
to assume F is finite and take Ω to be the atoms of the Boolean algebra generated by F .

22This determines p defined on F by the assumption that p is probabilistic and that Ω is
finite.

23Our result would still work if e is a weighted average of the bi by appropriately weighting
each Gi in the final collection of gambles under consideration.

24And then e =

∑
ibi
n

=

∑
i 6=jbi
n−1

.
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e
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Figure 1: Illustration of our choice of bi and e

Assume we’ve deleted the Pi from consideration where e ∈ Pi. Now focus on
an individual probabilistic content Pi.

Lemma 4. There is some εi > 0 such that for each p ∈ Pi, Expp[bi − e] >
Expe[bi − e] + εi. I.e. the gamble

Gi = (bi − e)− (Expe[bi − e] + εi)

is desirable.

Proof. {e} and Pi are disjoint convex sets. So we can use the strong hyperplane
separation theorem (see Border, 2010). This gives us some linear functional Fi,
in fact Fi = bi − e, with some εi > 0 where:

p · Fi > e · Fi + εi for all p ∈ Pi.

Thus,25 Expp[bi − e] > Expe[bi − e] + εi for all p ∈ Pi, as required.

Lemma 5. The collection of gambles Gi = (bi − e)− (Expe[bi − e] + εi) when
taken together lead to a guaranteed loss.

Proof. By recalling that e =
∑

i bi
n we see that

∑
i(bi(w)− e(w)) = 0; but that∑

i(Expe[bi − e] + εi) =
∑

i εi > 0.

This suffices for theorem 2.

Theorem (1). If you have some finite collection of probabilistic beliefs whose
closed convex hulls are jointly inconsistent, then you are Dutch bookable.

And conversely, if there is no such finite inconsistency in the closed convex
hulls of your beliefs, then you are not Dutch bookable.

Proof. The result that such inconsistency entails Dutch bookability follows
immediately from theorem 2 by noting that if someone believes P , with Q ⊇ P ,
and Q desires G, then so does P .

25As Expp[F ] =
∑

w p(w)F (w) = p · F .
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We now prove the converse result: Consider a collection of gambles G1, . . . Gn

each of which is desirable. This desirability comes from some Pi. So Expp[Gi] > 0
for all p ∈ Pi. Thus, Expp[Gi] > 0 for all p ∈ Qi, where Qi is the smallest
closed and convex set of probabilities extending Pi. If Q1, . . . , Qn is consistent,
we can take some p∗ ∈ Q1 ∩ . . . ∩ Qn. So, Expp∗Gi > 0 for all i; and thus
Expp∗

∑
iGi =

∑
i Expp∗Gi > 0. So it cannot be that

∑
iGi(w) < 0 for all

w ∈ Ω as p∗’s expectation of a guaranteed loss would be negative.
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