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Abstract

In this paper we propose a mathematical model for imprecise probabil-
ity representing an agent’s uncertain beliefs. The proposed model is closely
related to the credal set model, which uses a set of probability functions.
The credal set model can be conceived of as encoding judgements such as it
seeming more likely that it’ll rain than snow. It requires that these judge-
ments be closed under consequences according to the probability functions
that satisfy the judgements. We adopt a similar idea but instead only
require her judgements to be closed under finite consequences according
the probability functions satisfying them. The formal model that we will
provide for this is a collection of probability constraints which is closed
under finite intersection and supersets. That is, it forms the mathematical
structure of a filter. We will show how this allows the model to avoid
some criticisms of the credal set model by Walley which led him to instead
arguing for a model of uncertainty as a set of desirable gambles directly.
We will show a close connection between this desirable gambles model and
the proposed model of probability filters.

1 Introduction

In work on imprecise probabilities, various mathematical models are provided
to capture an agent’s uncertain belief state (see especially [68]). In this paper
we develop and discuss an alternative mathematical model closely related to
the very prominent approach of representing an agent’s belief state, or credal
state, with a set of probability functions, often called the credal set model [e.g.,
36, 37, 20, 28, 65, 2, 50, 3, 42, 21].

A credal set is sometimes taken to merely be a formal representor of some
other, more primitive, kinds of judgements of the agent reflecting her belief state.
For example, one might consider a judgement expressed by “it seems more likely
to rain than to snow”. Such judgements can be seen to be satisfied by some
probability functions and not by others. For example, this judgement is satisfied
by those functions assigning a higher probability to it raining than to it snowing.

∗These ideas were initially developed in joint work with Jason Konek [7]. I am very grateful
to him as well as to Arthur van Camp, Kevin Blackwell, Gert de Cooman, Giacomo Molinari
and Teddy Seidenfeld for very helpful discussions. The referees of ISIPTA and IJAR have
provided detailed and helpful comments which has vastly improved the paper. I am very
grateful to them. Some of my work was funded as a Leverhulme research fellow.
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In this paper, we propose modelling one’s belief state with a collection of
judgements, each of which is satisfied by some probability functions. We will
include the judgements that the agent explicitly holds, along with those that
she is committed to because they “follow from” her explicitly held judgements.1

The credal set model is recovered when one characterises “follows from” by
entailment in accordance with finitely additive probability theory: If every
finitely-additive probability function satisfying all her explicitly held judgements
has another property, then this further probability constraint is something she is
also committed to. For example, if she holds the judgement that it is 0.8-likely
that Jones smokes, then she is committed by coherence to the judgement that it
is 0.2-likely that Jones does not smoke.2

This is essentially the account by Van Fraassen [63, 64, 65, 66]3 and is close
to some comments by Joyce [28, 26, 24]. For Van Fraassen, the agent’s state of
opinion is characterised by a collection of judgements and coherence is specified
by entailment according to probability functions satisfying the judgements. A
credal set is merely a “representor” of coherent collections of judgements. This
model is also essentially proposed by Moss [44], which formed the origin of this
paper, as joint work with Jason Konek [7].

This offers a mathematically equivalent reformulation of the credal set model
and is compatible with many accounts of credal sets. Instead of focusing on
a single set of probability functions, one focuses on the properties that the
probability functions in the set have in common. One can specify a credal
set and read off such judgements, or start off with judgements and read off a
collection of probability functions satisfying them all. If one’s judgements are
closed and consistent under entailment according to the probability functions
satisfying them then the two accounts are mathematically equivalent.

However, at this point we make an important alteration to the model: We will
restrict the notion of entailment that we impose for coherence to only consider
finitely many judgements at a time.4 If a judgement follows from finitely many
of her explicitly held judgements, in the sense that every (finitely-additive)
probability function satisfying the held judgements also satisfies the further
judgement, then we say that she is committed to the further judgement. But if it
follows only when infinitely many of her explicitly held judgements are considered
together, then we do not say she is committed to the further judgement.

We will call this the probability filter model of belief, as the structure of the
probability constraints she is committed to forms the mathematical structure of
a filter on probability functions.

This might be motivated by considerations on the limitations of reasoning
we can hold a coherent agent to. Perhaps she is unable to survey her infinitely
many judgements simultaneously. The coherence notion that we impose only
constrains finite subsets of the agent’s judgements at a time. This move bears
some connection to responses to arguments for countable additivity, such as
countable Dutch book arguments [17, 47]. This allows her judgements to be
infinitely incompatible: there may in fact be no probability function which
satisfies her infinitely many judgements simultaneously.

1Thanks to a referee for encouraging this separation. It also is adopted by Van Fraassen
and highlighted in much work on natural extensions in the imprecise probability literature.

2See also Moss [44, §1.1] for this example.
3In particular, the sections: [63, §6-§7], [64, p.250-252] [65, p.345-347], [66, p.483-485].
4That is, we ensure that it is a compact notion of entailment.
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It allows, for example, that an agent may judge the expected value of a given
gamble to be positive but nonetheless, for any small price she would have to pay,
she judges it to have a negative expected value. This is a phenomenon deemed
coherent in an alternative popular model of belief, that of sets of desirable
gambles; a connection which will prove important. It is this difference which
means the model of this paper is not equivalent to the credal set model, although
it is closely connected. We will show how this enables the model to avoid certain
key objections to the credal set model of belief, as given by Walley [68]. In
particular, it allows for accommodation of strict preferences and similarly can
avoid the probability-zero challenges for accommodating updating.

Walley [68] criticised the credal set model for not being appropriately able
to capture strict comparative judgements. He argues that if one gamble might
lead to a gain and cannot lead to a loss then you should judge it as desirable,
preferring it to the status quo. In the credal set account, one typically reads off
a judgement that a gamble is desirable when every probability function in the
set assigns it a positive expected value. In our formalism, the agent must hold
the credal judgement (either explicitly or by commitment) that it has positive
expected value. In the credal set framework, the desideratum that such gambles
be desirable can be accommodated only if every possible outcome has positive
probability according to every member of the credal set. This is not possible in
uncountable sample spaces even when only imposing finite additivity.

It is, however, something that we can impose in the probability filter frame-
work. We are able to require that for every possible outcome you judge it to have
positive probability. Since we only impose for coherence that your judgements
be closed under finitary consequence, you need not hold the judgement that
every possible outcome has positive probability, unless the sample space is finite.
If the sample space is uncountable, there is no such probability function, so the
judgement that every possible outcome has positive probability is satisfied by no
probability functions. This would result in triviality. This allows us to force the
agent to hold the judgement that the expected value of this gamble is positive,
thus strictly preferring it to the status quo, for every gamble which might lead
to a gain and cannot lead to a loss.

This will also allow us to obtain a simple treatment for conditionalisation.
This is another criticism by Walley [68] of the credal set model. Conditioning on
events of probability zero cause significant difficulties in the theory of probability
and similarly in the credal set model. But since we can impose of each possible
outcome that you judge it to have positive probability, we can make use of simple
Bayesian conditionalisation on events with non-zero probability to characterise
rational updating for the model.

To light of these challenges, Walley [68] argues that one should instead work
directly with a mathematical model for uncertainty which specifies those gambles
that the agent judges as desirable or preferable to the status quo, with no explicit
reference to an underlying probability account. This is a prominent and popular
alternative model of belief [68, 45, 69, 52]. A key result of the current paper
is that unlike credal sets, the model we propose is sufficiently informative to
encompass coherent sets of desirable gambles. That is, we can understand a
judgement that a gamble is desirable as providing a probability constraint, that
you judge it to have positive expected payout. We will show that the usual
notion of coherence on sets of desirable gambles matches exactly that of being
closed and consistent under finitary probabilistic entailment (along with the

3



assumption that each possible outcome is judged to have positive probability).
This paper proceeds as follows: We introduce the proposed model in Section 2

as a collection of probability constraints and giving the notion of coherence as
being a filter on probability functions. We will show how it can accommodate
a version of regularity (Section 2.5) which allows it to avoid probability zero
difficulties in accommodating updating (Section 2.6).

In Section 3, we discuss the relationship between the model of probability
filters and that of sets of desirable gambles. The most important results of this
paper are that the probability filter framework encompasses that of coherent sets
of desirable gambles given their usual axioms (Theorems 3.7 and 3.10). More
precisely, once pointwise regularity is imposed, the usual axioms on coherence
of sets of desirable gambles are exactly the ones that are characterised by the
probability filter model. Since the probability filter model is simply imposing
finite probabilistic entailment this is to show a close connection with these axioms
and the laws of probability once only finite consequences are considered.

In Section 4 we will move to discuss the relationship between probability filters
and a more general model proposed for uncertainty given by coherent choice
functions or coherent sets of desirable gamble sets, as studied in De Cooman,
Van Camp and De Bock [12, 13, 61, 16], building on Seidenfeld et al. [53]. We
consider a judgement of a gamble set as desirable to be a credal judgement and
satisfied by the probability functions which give positive expectated value to
some member of the set. This is to apply an analogue of E-admissibility rather
than Maximality. Our results show that requiring that judgements of this form
to be closed and consistent under finitary probabilistic consequence results in
the usual axioms of coherence plus a so-called mixing axiom.

De Cooman, De Bock and Van Camp [16] have recently considered using
filters of coherent sets of desirable gambles themselves. This offers a more general
model, as it encompasses all coherent choice functions rather than just those
satisfying the mixing axiom. We offer a suggestion to use probability filters as
one’s model of belief and accommodate other choice functions by inclusion of
a further parameter describing how one structures decisions. This allows for a
model of belief which remains close to that of the credal set model, keeping the
account within the tradition of capturing the agents belief state with models
based on probabilities.

This paper argues that this probability filter model, which is closely connected
to the credal set model, can avoid the objections by Walley [68] to the credal set
model. Its results also identify the axioms on desirability corresponding to consis-
tency and closure under finitary probabilistic entailment amongst judgements of
gambles having positive expected value. Once we additionally include pointwise
regularity, which is to include the judgement that each possible outcome has
positive probability, then the usual axioms on coherence on desirable gambles
are exactly characterised.

2 The probability filters model of belief

2.1 Probability constraints and coherence

In this section we introduce the new mathematical framework for modelling the
agent’s belief state.
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Representations are always relative to an underlying space of possible out-
comes, Ω. Formally, Ω is simply a non-empty set. It represents the possible
ways that the world might be. If we are just focusing on her opinions about
the outcomes of a specific experiment, Ω would consist of the different possible
experimental outcomes, where it is guaranteed that exactly one of these outcomes
obtains.

Setup 2.1. A (finitely additive) probability function is p : ℘(Ω) → R≥0 which
is normalised, where p(Ω) = 1, and finitely additive, where p(F∪E) = p(F )+p(E)
for F,E disjoint subsets of Ω.

Probs is the collection of all probability functions.
A probability constraint is any set of probability functions, C ⊆ Probs.
For a probability constraint C ⊆ Probs, C is the complement of C, relative

to Probs, i.e., C = Probs \D.

Our proposed model of belief is closely connected to the credal set model.
It is supposed that the agent’s belief state is characterised by her ‘judgements’;
both those that she explicitly holds and some that she is committed to. We
are building a model closely related to the credal set model, and understand
her judgements as satisfied by some probability functions and not by others,
thus imposing a probability constraint. Van Fraassen calls these ‘epistemic
judgements’ [64, 63]. We sometimes call them ‘credal judgements’.

An agent’s judgements may be expressed with sentences such as “rain seems
at least as likely as snow to me”. This determines a constraint on credence
functions, and in particular, imposes a constraint on the (finitely additive)
probability functions which satisfy it. We will write an expression like this
more concisely as “pr(Rain) ≥ pr(Snow)” and use J. . .K to denote the set of
probability functions that satisfy it. For example:

Jpr(Rain) ≥ pr(Snow)K = {p ∈ Probs | p(Rain) ≥ p(Snow)}.

The judgement expressed by “it seems twice as likely that John passes the
exam than that Billy passes the exam” is written more concisely and determines
the probability constraint as follows:

Jpr(JohnPasses) = 2 pr(BillyPasses)K
= {p ∈ Probs | p(JohnPasses) = 2 p(BillyPasses)}.

In general, we will express probability constraints by using formulations in
a language with ‘pr’ and denote the set of probabilities satisfying them with
J. . . pr . . .K = {p ∈ Probs | . . . p . . .}. The form of credal judgements that the
agent can make and restrictions to the class of probability constraints at stake
will be returned to in Section 2.4. In our main account, we allow for arbitrary
subsets of Probs.

We will use these probability constraints to provide our mathematical model
of the belief-state, or credal state of the agent. We propose this as a model of
indeterminate rather than imprecise probabilities, in the sense of Levi [36, 38].
We propose replacing the role of a credal set with that of a probability filter,
which encodes the probability judgements, or credal judgements, of the agent.

We understand such judgements as imposing restrictions on (personal) prob-
ability functions or ‘credence’ functions. In line with Levi [38, 39, 40] we might
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take them to be restrictions on the permissible probabilities, or perhaps restric-
tions on those credence functions which the agent deems it legitimate to use
when, for example, computing expected utilities. Van Fraassen’s [63, 64, 65, 66]
view is that one’s (personal) probabilities are vague and to be treated along
supervaluational lines. The members of one’s credal set are the “precisifications”
and the judgements are the determinate properties. We propose taking seriously
Van Fraassen’s view that the judgements, or determinate properties, are primary
and our modelling of the agent’s belief state works directly with such judgements.

We focus on just the probability functions satisfying the judgements as
opposed to other real-valued ‘credence’ functions which fail to satisfy the axioms
of probability. This is legitimate once one stipulates that a coherent agent is
committed to the judgement that “pr satisfies the axioms of probability”. Or
alternatively, simply defines the notion of coherent entailment according to the
probability functions satisfying the judgements. This extends the standard view
that the members of one’s credal set should satisfy the axioms of probability.

It allows us to obtain nice normative properties such as avoidance of suscepti-
bility to a Dutch book.5 Thinking of the agent’s credal judgements as ruling out
various credence functions as inadmissible or illegitimate, as identifying certain
features of credences she is committed to and others that she rules out, then
she should be committed to probabilistic coherence of the credence function.
This may perhaps be justified as a consequence of arguments that credences
be probabilistic, for example, due to their success at providing estimates of the
truth-values [23, 27]. In the determinacy approach to credal sets and credal
judgements more generally, then it is plausibly determinate that it is recom-
mended that one’s credences be probabilistic, and thus, we propose a rational
requirement that it be determinate that credences are probabilistic.6

Our proposed mathematical representation of the belief state of our agent is
to collect together those probability constraints which the agent is committed to,
which we will sometimes gloss as those that she believes. Formally, then, her belief
state is represented by a collection of probability constraints F ⊆ ℘(Probs). This
will include the probabilistic content of her explicitly held credal judgements but
also those probability constraints that she is committed to by virtue of a finitary
notion of probabilistic entailment which we will further discuss in Section 2.3.

Definition 2.2. A set of probability constraints, i.e., a set of subsets of Probs,
F ⊆ ℘(Probs), is coherent if it is a proper filter, i.e., it satisfies the following
axioms:

(F∩) For any C,D ⊆ Probs, if C,D ∈ F then C ∩D ∈ F .

(F⊇) For any C,D ⊆ Probs, if C ∈ F and D ⊇ C then D ∈ F .

(F̸=∅) F ̸= ∅.

(FProper) ∅ /∈ F .

5This is the defence of the assumption offered by Joyce [28, p292], although see Section 3.1.1.
6Under the proposal of Campbell-Moore [5, §4.5]. Various arguments against accuracy

for imprecise credences try to determine the accuracy of the indeterminate credal state
[54, 43, 51, 8]; see also Konek [33]. The line of thought here is instead just measuring accuracy
of the members of her credal state to determine overall constraints rather than a measure of
the accuracy of the indeterminate credal state.
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The notion of being a proper filter is standard from topology or proposi-
tional logic [22, 10]. Since we are representing uncertainty with a filter on the
probabilities, we will call these probability filters.

Axioms (F ̸=∅) and (FProper) ensure that a coherent F is non-trivial. Ax-
iom (F̸=∅) says that there has to be some probability constraint that she is
committed to, if only Probs, the set of all probability functions, itself. Ax-
iom (FProper) says that she does not believe ∅. The substantive axioms are
axioms (F∩) and (F⊇) saying that her believed probability constraints should
be closed under finite intersections and supersets. This is to say that we have
closed her judgements under finite consequences, which, when including our
axiom (F̸=∅) and the assumption that it is a filter on Probs, i.e., ensuring that
Probs ∈ F , is to say that we have closed her judgements off under a finite notion
of probabilistic consequence.

The axioms on coherence ensure that we have the following result.

Proposition 2.3 (No Confusion). 7 If F is coherent, then there is no D ⊆ Probs
where D ∈ F and D ∈ F .

Proof. If both D ∈ F and D ∈ F , then by axiom (F∩), we also have D ∩D =
∅ ∈ F , contradicting axiom (FProper).

This model allows for indeterminacy and a mode of suspension as there may
be probability constraints with neither D ∈ F nor D ∈ F .

We say that F ′ is at least as committal as F when F ⊆ F ′. If she suspends
on a probability constraint D, she may become more committal by adopting it or
by adopting its complement. This will be formally shown in Proposition 2.12.

2.2 Examples of probability filters

In this section, we give some important examples of coherent sets of probability
constraints, or probability filters, F .

Proposition 2.4. For any non-empty set of probabilities, ∅ ̸= C∗ ⊆ Probs, we
can associate a set of probability constraints, FC∗ ⊆ ℘(Probs), defined by:

FC∗ := {D ⊆ Probs |D ⊇ C∗}. (1)

Then:

(i) FC∗ is coherent.

(ii) FC∗ is the least committal coherent probability filter where the probability
constraint C∗ is believed. That is, for any coherent F ′ with C∗ ∈ F ′, we
have F ′ ⊇ FC∗ .

(iii) For C∗ ̸= C, FC∗ ̸= FC .

Proof. It is immediate to check that FC∗ satisfies all the axioms for coherence,
as given in Definition 2.2.

To observe that FC∗ is the least committal coherent opinion set where C∗ is
believed, note that any coherent F ′ with C∗ ∈ F ′ also has any superset of C∗,
any D ⊇ C∗, also in F ′, by axiom (F⊇). And thus F ′ ⊇ FC∗ .

If C∗ ≠ C, then either C∗ ̸⊇ C or C ̸⊇ C∗, so it is trivial to observe that
FC∗ ̸= FC .

7The name follows Quaeghebeur et al. [46, p.73]
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This result shows us that the credal set model of belief is encompassed by the
probability filter model. In the credal set model coherent belief states are given
by a set of probability functions, C∗. She is said to have a credal judgement
when every probability function in C∗ satisfies it. This is just to say that she
believes the probability constraints which are supersets of her set of probability
functions. This is what is given by FC∗ .

Filters that have the form FC∗ for some C∗ ⊆ Probs are, as standard for filters,
called principal filters.8 Not all coherent sets of probability constraints have
this form. There are non-principal filters, and thus coherent sets of probability
constraints that do not correspond to any credal set.

Proposition 2.5. There are coherent F where F does not have the form FC∗

for any C∗ ⊆ Probs. (Where FC∗ is specified as in Eq. (1)).
Moreover, there are coherent F where

⋂
F = ∅; that is, there is no p∗ ∈

Probs which is a member of every C ∈ F .

We couch the proof of this proposition as an example. It is a probability
filter that we will return to throughout the paper.

Example 2.6. Fix Ω = {H,T}, representing the outcome of a coin toss. We
will describe a probability filter FInfBiased, which does not correspond to any
single set of probabilities.

FInfBiased :=

{
C ⊆ Probs

∣∣∣∣ there is some ϵ ∈ R with ϵ > 0 and
C ⊇ J0.5 < pr(H) < 0.5 + ϵK

}
.

Recall our notation J0.5 < pr(H) < 0.5+ ϵK = {p ∈ Probs | 0.5 < p(H) < 0.5+ ϵ}.
To observe that this satisfies axiom (F∩), consider C1 ⊇ J0.5 < pr(H) <

0.5+ϵ1K and C2 ⊇ J0.5 < pr(H) < 0.5+ϵ2K. Then observe that C1∩C2 ⊇ J0.5 <
pr(H) < 0.5 +min{ϵ1, ϵ2}K, so C1 ∩ C2 ∈ FInfBiased. The remaining axioms are
easy to check.

For any p ∈ Jpr(H) > 0.5K, that is, p ∈ Probs with p(H) > 0.5, there
is some ϵ∗ > 0 such that p(H) ≥ 0.5 + ϵ∗ (just take ϵ∗ = p(H) − 0.5), so
p /∈ Jpr(H) < 0.5 + ϵ∗K. This shows that there is no p such that p ∈ C for all
C ∈ FInfBiased, i.e.,

⋂
FInfBiased = ∅.

This represents an agent for whom it seems that the coin is more likely to
land heads than tails but not by any particular amount. She holds the judgement
Jpr(H) > 0.5K and also the infinitely many judgements Jpr(H) < 0.5 + ϵK for
every ϵ.

Such an agent judges that an even-odds bet towards heads has positive
expected value, but for any price to pay for entering the exchange, she judges
the trade to have a negative expected value.

2.3 Natural Extension

If we know some of the agent’s believed probability constraints, we can determine
additional ones that she is committed to by virtue of coherence.

8In fact, principal filters are exactly those that are also closed under infinite intersections. We
thus have an equivalence between the credal set framework and probability filters which satisfy
this infinite intersection property. They can be seen as collecting those probability constraints
which are infinitary probabilistic consequences of her explicitly held credal judgements.
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Proposition 2.7. For coherent F , if D1, . . . , Dn ∈ F and C ⊇ D1 ∩ . . . ∩Dn

then also C ∈ F .

Proof. Suppose D1, . . . , Dn ∈ F . By iterated uses of axiom (F∩), we can see
that D1 ∩ . . . ∩Dn ∈ F . Then by axiom (F⊇), C ∈ F .

We give two illustrative instances of Proposition 2.7

Example Fact 2.8. For coherent F , if Jpr(E) > 0.6K ∈ F then Jpr(E) > 0.2K ∈
F .

Proof. This follows from axiom (F⊇), since

Jpr(E) > 0.6K ⊆ Jpr(E) > 0.2K.

It can also be seen as a special case of Proposition 2.7 with n = 1.

Example Fact 2.9. For coherent F , if Jpr(E) ≤ 0.3K ∈ F and Jpr(F ) ≤
pr(E)K ∈ F then Jpr(E ∪ F ) ≤ 0.6K ∈ F .

Proof. For p ∈ Probs, if p(E) ≤ 0.3 and p(F ) ≤ p(E) then also p(F ) ≤ 0.3 and
therefore, by the probability axioms, p(E ∪ F ) ≤ 0.3 + 0.3 = 0.6. I.e.,

Jpr(E) ≤ 0.3K ∩ Jpr(F ) ≤ pr(E)K ⊆ Jpr(E ∪ F ) ≤ 0.6K

So, this immediately follows from Proposition 2.7.

In fact Proposition 2.7 fully characterises coherence, and determines the
so-called natural extension: the least committal probability filter containing a
given collection of probability constraints.

Definition 2.10. For non-empty E ⊆ ℘(Probs), ext(E) is defined by: C ∈
ext(E) iff there are some finitely many members of E , D1, . . . , Dn, such that
C ⊇ D1 ∩ . . . ∩Dn. That is:

ext(E) :=

C ⊆ Probs

∣∣∣∣∣∣
there are some D1, . . . , Dn ∈ E

(where n ∈ N \ {0}),
with C ⊇ D1 ∩ . . . ∩Dn.

.

In our next proposition, we give a standard result regarding filters [see, e.g.,
1, p.58].

The first part gives a useful criterion for when a collection of judgements
can be coherently extended to a filter: it is when the probability constraints are
finitely consistent. This means that for any finitely many credal judgements,
there is at least one probability function which satisfies them all.

The second part shows that under such conditions, ext is indeed the usual
notion of natural extension, giving the least committal coherent extension.

Proposition 2.11. Suppose E ⊆ ℘(Probs) is non-empty. Then:

• There is a coherent F ⊇ E iff ∅ /∈ ext(E); i.e., iff for any D1, . . . , Dn ∈ E,
D1 ∩ . . . ∩Dn ̸= ∅ (this is usually called the ‘finite intersection property’).

• If ∅ /∈ ext(E), then ext(E) is coherent and is the least committal coherent
F ⊇ E.
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We include the proof because it is important in the results that follow.

Proof. As we noted in Proposition 2.7, if D1, . . . , Dn ∈ F with C ⊇ D1∩ . . .∩Dn

then C ∈ F . So, for any coherent F ⊇ E , we must have F ⊇ ext(E).
So it suffices to check that ext(E) is coherent iff ∅ /∈ ext(E). Axioms (F∩)

and (F⊇) hold for any ext(E) because we have forced ext(E) to be closed under
intersection and supersets by definition. (For the supersets, use n = 1.) It is
non-empty by assumption on E , since any C ∈ E is also in ext(E). So the only
remaining axiom for coherence is (FProper). Thus, ext(E) is coherent iff (FProper)
holds of it, i.e., iff ∅ /∈ ext(E).

Another useful case is when E is already closed under finite intersections. In
this case, ext(E) just takes supersets; that is C ∈ ext(E) iff C ⊇ D for some
D ∈ E .

This natural extension can be seen as the mechanism for taking the agent’s
explicitly held credal judgements and determining additional ones she is com-
mitted to. This allows her belief state to be stored in the form of a few explicit
judgements. We can also directly present a version of this applied directly to
credal judgements rather than going via their associated probability constraints.
A collection of judgements is said to probabilistically entail a further judge-
ment if every probability function satisfying the former judgements also satisfies
the latter. They are said to finitarily probabilistically entail another judge-
ment if a finite subset of them probabilistically entails that additional judgement.
Closing a set under finite probabilistic entailment is exactly what is done by the
natural extension notion given here. Coherent agents are said to be committed
to additional judgements which are finitarily probabilistically entailed by her
held judgements. This is a finitary version of the approach of Van Fraassen [64,
p. 252].

Finally, we present the following result, which shows an important aspect
of the model of belief showing that it properly accommodates suspension of
judgement. If C /∈ F and C /∈ F , then F could become more committal either
way.

Proposition 2.12. Suppose F is coherent. If F suspends judgement on a
probability constraint D∗ ⊆ Probs, i.e., D∗ /∈ F and D∗ /∈ F , then there is a
coherent probability filter Fbel which is at least as committal as F , i.e., Fbel ⊇ F ,
and which believes D∗, i.e., D∗ ∈ Fbel; and there is another coherent probability
filter Fdisbel which is at least as committal as F , i.e., Fdisbel ⊇ F , and which
disbelieves D∗, i.e., D∗ ∈ Fdisbel

Proof. Put Fbel := ext(F ∪ {D∗}). We just need to check that Fbel is coherent.
By Proposition 2.11, it suffices to check that for any C1, . . . , Cn ∈ F we have
that D∗ ∩C1 ∩ . . .∩Cn ≠ ∅. If D∗ ∩C1 ∩ . . .∩Cn = ∅ then D∗ ⊇ C1 ∩ . . .∩Cn;
and thus by Proposition 2.7, already D∗ ∈ F by coherence of F . So, since we
have assumed that D∗ /∈ F , we know that Fbel is coherent. By construction, it
is more committal than F and contains D∗.

Similarly, we can see that Fdisbel := ext(F ∪ {D∗}) is coherent since D∗ /∈
F .

As a consequence of this, the maximal coherent F are those where for every
C ⊆ Probs either C ∈ F or C ∈ F . These are typically called ultrafilters. The
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principal ultrafilters correspond to precise probabilities. The non-principal, or
free, ultrafilters are closely related to hyperreal valued probability functions.

We can also see as a consequence of this that this framework provides a
strong belief structure in the sense of De Cooman [14], that is, that any coherent
filter is the infimum of its dominating maximal belief models, which are the
ultrafilters.

2.4 Restricting the range of credal judgements

Our mathematical model of the agent’s belief state has moved from discussion of
credal judgements to directly working with probability constraints. Our notion
of coherence just considers the probability functions satisfying the judgements so
the constraint on probabilities imposed by the judgement is all that matters. In
our general account, we have allowed arbitrary subsets of Probs to be probability
constraints and a candidate for inclusion in F . In doing this, we have ensured
that we do not restrict to limited forms of judgements, such as that of merely
comparative probabilities or upper and lower probabilities. We have also, for
example, allowed the non-convex probability constraint, {p ∈ Probs | p(E) =
0.2 or p(E) = 0.3}, as something that can be in F . Such non-convex sets will
almost always be included in coherent F , if only because they are supersets of
members of F .

The formalism that we have developed, is compatible with restrictions to a
range of “representationally significant” probability constraints. These could, for
example, be convex sets of probability functions, or judgements certain gambles
as having positive expected value. Whilst it is possible to restrict the framework
in such ways, one needs to be careful to consider whether important differences
of opinion are being ruled out.

There are various proponents of restricting to convex credal sets [e.g., 37, 19,
68] but also those who object to it [34, 35, 28, 53, 63], and in much of philosophy
community it is not assumed [32, 2, 50]. The model of credal sets commonly
adopted by authors who reject convexity is unconstrained sets of probabilities
[34, 35, 28, 32, 2, 50].

Moreover, at least if the decision rule of E-admissibility is used, Seidenfeld
et al. [53] shows that arbitrary sets of probabilities can lead to different choice
functions, giving support to the claim that arbitrary constraints on probabilities
are to be considered. This leads to our suggestion of working with arbitrary
filters on Probs which may be characterised by arbitrary sets of probabilities.9

Suppose we have some specified range of judgements which are to be con-
sidered, R ⊆ ℘(Probs). How should we implement this restriction into the
framework?

The approach in line with De Cooman et al. [16] would be to restrict to
filters not defined over ℘(Probs) but only over R. If R is closed under finite
intersections, the analogous axioms from Definition 2.2 can be given. This is the
case for the restriction proposed for [16].

An alternative approach to implement a restriction is to still allow for arbitrary
filters as mathematical tools, but say that only certain aspects of it are relevant
for capturing the agents belief state. This is the approach suggested in Joyce [28],

9In Section 4.7 we show a case where a seemingly very general class of judgements still
rules out certain seemingly important differences of opinion. It shows that distinct probability
filters may nonetheless result in the same choice function.
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although his point is to reject various such restrictions. Using his terminology, we
can say that F and F ′ “encode the same beliefs about Ω” when R∩F = R∩F ′.

Given any filter F ′ we could then identify clR(F ′) = ext(F ′ ∩R), the least
committal coherent set of probability constraints which encodes the same beliefs
as F .

Filters which can be generated in such a way are those that satisfy a further
axiom:

(FRestr(R)) If C ∈ F then there are finitely many R1, . . . , Rn ∈ F ∩ R (n ∈ N \ {0})
such that C ⊇ R1 ∩ . . . ∩Rn.

This axiom is satisfied just when the agent’s belief state is characterised by
credal judgements that have the form accommodated in R.

For example, if R = {C ⊆ Probs | C is convex} then we can still have non-
convex probability constraints in F , we are not restricting F to only be defined
on convex sets. But non-convex constraints are only in F when they are merely
implications of convex constraints. For example if Jpr(H) = 0.2K ∈ F then also
Jpr(H) = 0.2 or pr(H) = 0.3K ∈ F .

We will continue to work in the general mathematical framework of arbitrary
filters of probabilities, as the most natural extension of the model of arbitrary
credal sets. However, interest in the model is not dependent on this fact and it
can be restricted to various classes of “representationally significant” probability
constraints in one of these ways. In Sections 3.6 and 4.7, we will discuss some
possible restrictions, using axiom (FRestr(R)) as our general way of restricting
the framework.

2.5 Regularity

One can impose a further axiom on probability filters which is closely related to
regularity.

A credal set is said to satisfy credal regularity when every probability function
in the set assigns non-zero probability to each possible outcome. Regularity for
credences has been defended by [29, 56, 58, 41, 57].

Credal regularity results in the attractive feature that if a gamble has some
possibility of gain and no possibility of loss, then every probability function
in your credal set evaluates it to have positive expected gain, so you judge it
as preferable to the status quo. Walley [68] argues that this is essential for
accommodating strict preferences.

Whilst it is a plausible principle with attractive consequences, this principle is
impossible to satisfy when there are uncountably many possible outcomes. There
are no finitely additive probability functions which assign positive probability
to uncountably many possible outcomes. There are thus no regular probability
functions and thus no credal sets satisfying credal regularity. Lewis [41], Skyrms
[57] advocate moving to hyperreal probability functions to maintain regularity. In
the probability filter framework, however, we do not need to introduce hyperreals
explicitly, instead the flexible structure of one’s judgements can accommodate
this.

We can require of each possible outcome that you judge it to have positive
probability. That is, for each ω ∈ Ω, Jpr(ω)> 0K ∈ F . We will call this pointwise
regularity.

12



Definition 2.13. F is pointwise regular iff

(Freg-pw) For all ω ∈ Ω, Jpr(ω)> 0K ∈ F .

This is “pointwise” in the sense that it only imposes of each ω ∈ Ω individually
that Jpr(ω)> 0K ∈ F . This will entail that Jpr(ω1)> 0 and . . . and pr(ωn)> 0K
for any finitely many ω1, . . . , ωn ∈ Ω. It will not, however, entail that Jpr(ω) >
0 for all ω ∈ ΩK ∈ F unless Ω is finite.

When Ω is uncountable, Jpr(ω) > 0 for all ω ∈ ΩK is just ∅: there are no
such probability functions. Thus, by axiom (FProper), it is not in F . This is
not, however, enough to show that pointwise regularity cannot be imposed, as
it does not follow from pointwise regularity because of our restriction to finite
entailment.

In fact, for any space of possible outcomes, we can find coherent sets of
probability constraints which are pointwise regular.

Proposition 2.14. For any Ω, there is a coherent F which is pointwise regular.

This can be seen as a consequence of our forthcoming Theorem 3.10, but it
can also be proved directly.

Proof. Consider ext({Jpr(ω)> 0K|ω ∈ Ω}). This satisfies axiom (Freg-pw). Due to
Proposition 2.11, we just need to show that for any finitely many ω1, . . . , ωn ∈ Ω,
Jpr(ω1)> 0K ∩ . . . ∩ Jpr(ωn)> 0K ̸= ∅.

Fix some finitely many ω∗
1 , . . . , ω

∗
n. Define a probability function p∗ which is

uniform over these finitely many worlds. This is given by p∗(E) =
#(E∩{ω∗

1 ,...,ω
∗
n})

n ,
with # denoting the cardinality. As p∗(ω∗

i ) > 0 for each i, in fact, p∗(ω∗
i ) =

1/n, then p∗ ∈ Jpr(ω∗
i )> 0K for each i = 1, . . . , n. Thus Jpr(ω1)> 0K ∩ . . . ∩

Jpr(ωn)> 0K ̸= ∅, as required.

Proposition 2.15. Suppose F is coherent and pointwise regular. If E ⊆ Ω is
such that E ̸= ∅ then Jpr(E)> 0K ∈ F .

Proof. Consider any ω∗ ∈ E. By pointwise regularity, Jpr(ω∗)> 0K ∈ F . For
any probability function, p, p(ω∗) > 0 implies p(E) > 0, so Jpr(E)> 0K ⊇
Jpr(ω∗)> 0K. Thus, by axiom (F⊇), Jpr(E)> 0K ∈ F .

2.6 Updating and Conditionalisation

By being able to impose pointwise regularity, we can avoid difficulties faced in
accommodating updating for the probability framework. This was a key criticism
of the credal set model by Walley [68] and a proposed significant benefit of our
probability filter model.

Upon learning a proposition E ⊆ Ω what updated belief state should you
adopt? There is a simple answer for the standard probability framework at least
when p(E)> 0, that is, that you should apply the ratio formula or Bayesian
conditionalisation. That is, adopt an updated probability p(· |E) given by p(F |
E) = p(F∩E)

p(E) for F ⊆ Ω. Difficulties arise only when p(E) = 0.

This is typically applied to credal set characterisation of imprecise probability
in a pointwise manner [e.g. 28, 3I]: update each member of one’s credal set,
C∗, by standard Bayesian conditionalisation, at least when p(E) > 0 for every

13



p ∈ C∗, i.e., C∗ ⊆ Jpr(E)> 0K. That is, when C∗ ⊆ Jpr(E)> 0K, then after
learning E you should adopt C∗|E := {p(· | E) | p ∈ C∗}.

We can extend this pointwise approach to the probability filter framework in
a natural way: If your pre-learning filter believed probability constraint C with
C ⊆ Jpr(E)> 0K, then after learning E, you should believe C|E := {p(· | E) |
p ∈ C}.

We will extend this idea to C ̸⊆ Jpr(E)> 0K by just updating by conditional-
isation those members of C which are in Jpr(E)> 0K, i.e., where p(E) > 0.

Definition 2.16.

F|E =

{
D ⊆ Probs

∣∣∣∣ there is C ∈ F
with D ⊇ {p(·|E) | p ∈ C and p(E) > 0}

}
We will provide a minimal result showing that this update is always sensible

in that the updated probability filter is coherent if the original one was coherent
and pointwise regular. Whilst the updated filter will not be pointwise regular
as it will contain Jpr(ω) = 0K for ω /∈ E, it is pointwise regular on E. It is
also essentially defined by probability functions which are supported on E. One
might instead conceive of F|E as a filter whose ‘points’ are probability functions
on E rather than on Ω, however we do not pursue this for simplicity with the
standard probability update formalism.

Proposition 2.17. If F is coherent and pointwise regular, then F|E is coherent
and Jpr(ω) > 0K ∈ F|E for all ω ∈ E. Furthermore, Jpr(E) = 1K ∈ F|E.

Proof. Since F ≠ ∅ also F|E ̸= ∅. It is closed under supersets by definition.
It is closed under finite intersections as F is. To show it is coherent, we thus
just need to show that it does not contain ∅. If ∅ ∈ F then there must be
some C ∈ F with C ∩ Jpr(E)> 0K = ∅. But since Jpr(E)> 0K ∈ F by pointwise
regularity, C ∩ Jpr(E)> 0K ∈ F , so C ∩ Jpr(E)> 0K = ∅ would contradict the
coherence of F .

Consider ω∗ ∈ E. By pointwise regularity of F , Jpr(ω∗)> 0K ∈ F . And for
any p ∈ Jpr(ω∗)> 0K, also p(E) > 0 and p(ω∗ | E) > 0. Thus Jpr(ω∗)> 0K ⊇
{p(·|E) | p ∈ Jpr(ω∗)> 0K and p(E) > 0}, giving us that Jpr(ω∗)> 0K ∈ F|E.

It remains to show that Jpr(E) = 1K ∈ F|E. Note that Jpr(E)> 0K ∈ F so
{p(·|E) | p ∈ Jpr(E)> 0K} ∈ F|E and that p(E) = 1 for every p in this set. Thus
Jpr(E) = 1K ∈ F|E.

Further investigation would provide axioms characterising coherence of a
notion of conditional filters, when they can be determined from a single underlying
filter in accordance with this update, see also Williams [69].

In Section 3.7, we will show a close relationship with our updated defined
here and judgements of called-off gambles.

3 Probability filters and desirable gambles

One of the most prominent models of belief in the imprecise probability literature
is to model one’s belief by a set of desirable gambles [68, 67, 45, 9, 52, 69]. It is
a model that encompasses many other models, such as comparative previsions.

In this section we will compare the probability filter model of belief to the
set of desirable gambles model.

14



3.1 From Probabilities to Estimated Values and Previsions

Estimation of various quantities of interest is important both epistemically and
for linking to decision making. We naturally express judgements directly in
terms of estimation or expectation. For example, “I expect my grade to increase”
might naturally be thought to express “my expectation value of my current
grade is lower than my expectation value of my future grade” (Van Fraassen [66,
p484-485]). “My expected value of this gamble is positive”.

Since finitely additive probability functions determine unique expected values
for bounded random variables, such judgements can be understood as constraints
on probability functions. For example, a judgement that my grade will increase
gives the probability constraint:

JExppr(GradeFuture) > Exppr(GradeCurrent)K

= {p ∈ Probs | Expp(GradeFuture) > Expp(GradeCurrent)}.

A judgement that gamble g has positive expected value can be understood as:

JExppr(g) > 0K = {p ∈ Probs | Expp(g) > 0}.

We might alternatively replace our use of probabilities in our probability filters
directly with (real-valued) estimated value functions and encode not constraints
on probability functions but constraints on estimation functions. That is, we can
think of the agent as having credal judgements which are satisfied by expected
value functions. An expression of an credal judgement of the form “I expect
my grade to increase” is then to be understood as satisfied by a collection of
expectation functions, those which assign a higher expectation value to my future
grade than to my current grade. When she judges that one gamble is better
than another, this is to be understood as a credal judgement that her estimated
value of the one is higher than the other.

To match the restriction to finitely additive probability functions we would
restrict to estimation functions which are monotone, normalised and linear. We
will hold her committed to any further judgements which “follow from” her
explicitly held judgements, in the sense that any monotone, normalised and
linear estimation function satisfying her explicitly held judgements also satisfies
the further judgement.

In this paper we are focusing on the relationship to the desirable gambles
model of belief and so are interested in particular in her estimates of the payout
of gambles. A gamble is a bounded random variable which is interpreted as an
uncertain reward, giving a payoff in each state of the world ω ∈ Ω, described in
a single, predetermined, linear utility scale [45].

Setup 3.1. A gamble is a bounded function from Ω to R. G is the collection
of all gambles.

0 is a gamble that takes value 0 at every world.
For gambles f and g, when f(ω) ≥ g(ω) for all ω ∈ Ω, we will say f ≥ g.
G≥0 is the set of gambles where f ≥ 0 and G≤0 is the set of gambles f ≤ 0.
G≩0 is the set of gambles where f ≥ 0 and f ̸= 0.10

1E is the indicator gamble for E ⊆ Ω, given by 1E :=

{
1 ω ∈ E

0 ω /∈ E
.

10These are usually simply denoted with G>0, but I keep the ≩ to highlight the weak
dominance component, rather than that g(ω) > 0 for all ω ∈ Ω.
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In this case, her estimated values are typically called her prevision and the
restriction to finitely additive probabilities parallels a restriction to so-called
linear previsions.

Definition 3.2. P : G → R is a linear prevision if it is monotone, normalised
and linear. That is:

(PMon) If g ≤ f then P (g) ≤ P (f).

(PNorm) P (1Ω) = 1.

(PLin) P (αg + βf) = αP (g) + βP (f) for α, β ∈ R, g, f ∈ G.

Prevs is the set of all linear previsions.
We use P (ω) := P (1{ω}).

Probability functions can be determined from a linear prevision by consid-
eration of the prevision of the indicator gambles. We can also consider the
expectation function generated by a finitely additive probability, Expp [18, §III]
and check that it is a linear prevision in that it is monotone, normalised and
linear. In fact, there is an isomorphism between finitely additive probability
functions and linear previsions [45]. This isomorphism relies on our restriction
to bounded random variables.11

It thus makes no formal difference whether we are considering filters over
finitely additive probability functions or linear previsions. The advantage of
having introduced our model with probabilities is its close link to the credal set
model and to highlight the probabilistic foundations of the model. However,
since this paper will be focused on the link to the desirable gambles models of
belief, there is a simplicity in considering linear previsions instead.

We thus, for the remainder of the paper, move to directly talking about linear
previsions and understand credal judgements to impose constraints on linear
previsions. The agent is thus represented by a collection of judgements, each
ruling out some linear previsions.12

We will use concise notation paralleling that introduced for probabilities,
such as:

JPr(g) > 0K = {P ∈ Prevs | P (g) > 0}

A reader who wants to think about probabilities might wish to consider P (g)
as shorthand notation for Expp(g) and always quantify just over Probs rather
than Prevs in the constraints.13

11See Schervish et al. [49] for consideration of relaxation of this. We conjecture that the
results of this paper still hold when we permit unbounded gambles, working instead in RΩ

with the product topology. Moreover, since continuous linear functionals in RΩ are finitely
supported, this suggests that one can restrict to just linear previsions, or probability functions,
with finite support.

12A suggested interpretation following Levi [38, 39, 40] is to take credal judgements to
be restrictions on the estimated value functions, or price functions, which the agent deems
permissible to use in deliberation and evaluation. See Konek [31] for more on the inclusion of
‘evaluation’.

13 This is legitimate because of the isomorphism between linear previsions (of bounded
gambles) and finitely additive probability functions.

To directly observe that the results of this paper work when one instead considers filters
of probabilities, one needs to check firstly: that they generate linear previsions, so that the
axioms on desirability hold; and secondly: that they have enough flexibility to play the role
required in the separation results of Sublemmas 3.10.3 and 4.8.3.
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For the remainder of the paper, then, we will understand our models of belief
as collections of constraints on linear previsions, that is, F ⊆ ℘(Prevs), and
we say it is coherent when it a proper filter, as in Definition 2.2. Given the
isomorphism between the frameworks there is no formal difference and all the
results of Section 2 still hold, most of which anyway only depend on the filter
structure.

We will keep using the terminology of probability filter and probability
constraints as we wish to highlight the connection to the credal set model based
on probability functions and the probabilistic underpinnings of the model.

3.1.1 Filter of lower previsions?

Every linear prevision has the property that P (g) = −P (−g). Hence

JPr(g) = −Pr(−g)K = {Pr ∈ Prevs | P (g) = −P (−g)} = Prevs

and therefore this belongs to F for any coherent F . That is, the agent should
always hold the judgement which might be expressed as “my expected gain from
buying the bet equals my expected loss from selling it”, despite the absence of
any fixed expected value or fair price for g.14

One could alternatively consider a filter not of linear previsions (equivalent
to probabilities) but of lower previsions [see especially 59]. Lower previsions are
themselves commonly used as a model of imprecise or indeterminate probability.
Adopting a filter of lower previsions therefore has two distinct potential sources
of imprecision: one arising from gaps in the agent’s judgements, and another
arising from allowing evaluation points to themselves be imprecise.

This would bring the framework closer to the approach of De Cooman et
al. [16]. This is a question we will return to in Section 4.4. We here note, however,
that using a filter of lower previsions will not make a difference to our study in
Section 3. Filters of lower previsions generate the exact same collections of sets
of desirable gambles as filters of probability functions do.15

It will, however, make a difference to determining choice functions, discussed
in Section 4. I conjecture that this would result in dropping a component of
the mixing axiom, axiom (KMix-conv), although that axiom (KMix-cl) would be
retained. To drop that too, De Cooman et al. [16] consider a filter of coherent
sets of desirable gambles directly. We will discuss this in Section 4.4.

14This should not be interpreted as saying that her upper and lower previsions are identical.
In line with our proposed link with desirability of Section 3.2, we would most naturally
understand the agent’s lower prevision as the supremum price at which she judges buying the
gamble desirable, and the upper prevision as the infimum price at which she judges selling the
gamble desirable. In general, it may be that

sup{r | JPr(g) > rK ∈ F} < inf{r | JPr(g) < rK ∈ F}.

15To see this, we already show that any set of gambles satisfying the relevant axioms can
be derived from a filter of linear previsions (Theorem 3.10, or in the more general settings,
Theorems 3.14 and 3.17), so filters of lower previsions are at least as general. But one can also
check that they satisfy the relevant axioms too. Note that axiom (DArchCl) just depends on
continuity of the function.
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3.2 Desirability judgements

The desirable gambles model represents uncertainty with a set of desirable
gambles; those judged as preferable to the status quo. The standard axioms on
coherence for a set of desirable gambles are as follows [68, 45]:

Definition 3.3. A set of gambles, D ⊆ G, is coherent if it satisfies the following
axioms:

(D0/∈) 0 /∈ D.

(D≩0) If g ∈ G≩0, then g ∈ D.

(Dλ) If g ∈ D and λ > 0, then λg ∈ D.

(D+) If f, g ∈ D, then f + g ∈ D.

We propose connecting the framework by understanding a desirable gamble
as one where you judge it to have positive expected value. That is, we ask
whether JPr(g)> 0K ∈ F .

Definition 3.4.
DF = {g ∈ G | JPr(g)> 0K ∈ F}.

We first note an equivalent formulation:

Proposition 3.5. g ∈ DF iff there is some C ∈ F with P (g) > 0 for all P ∈ C

Proof. If C is such that P (g) > 0 for all p ∈ C, then C ⊆ JPr(g)> 0K. So by
axiom (F⊇), C ∈ F implies JPr(g)> 0K ∈ F , which implies that g ∈ DF by
Definition 3.4.

If JPr(g)> 0K ∈ F , then we can put C as JPr(g)> 0K, observing that P (g) > 0
for all P ∈ C.

It is interesting to then note a special case of this result stated for principal
filters (those of the form in Proposition 2.4):

Corollary 3.6. If F has the form FC∗ for some C∗ ⊆ Prevs, that is, F =
{D ⊆ Prevs |D ⊇ C∗}, then g ∈ DF iff P (g) > 0 for all P ∈ C∗.

When the filter is principal it is equivalent to a credal set. If a credal set is
understood as a set of linear previsions, then DF is just those gambles where
P (g) > 0 for all linear previsions, P , in the credal set; if it is understood as a
set of probability functions, it is when Expp(g) > 0 for all probabilities, p, in
the credal set. That is, it matches the usual definition [45, §1.6.2].

Having seen how we are relating the framework of probability filters to that
of sets of desirable gambles framework, we will now turn to comparing the two
frameworks. We will ask the following questions:

(i) Is every DF coherent?

(ii) Does the probability filter framework encompass that of coherent sets of
desirable gambles? I.e., can every coherent D be obtained as DF for some
F?
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(iii) Does the probability filter framework go beyond that of coherent sets of
desirable gambles? I.e., are there distinct F and F ′ where DF = DF ′?

We will answer ‘yes’ to all three of these questions (Theorems 3.7, 3.10 and 3.18).
This will require just that F is coherent and pointwise regular.

As probability filters are just encoding sets of probability constraints which are
closed (and consistent) under finitary probabilistic entailment, positive answers
to our first two questions entail that the usual notion of coherence imposed on
sets of desirable gambles exactly matches that of finitary probabilistic entailment,
along with the additional assumption given by pointwise regularity.

3.3 Question (i). Every DF is coherent.

Requiring that F is coherent and pointwise regular ensures that the resultant
desirability judgements are coherent; that is, for a coherent and pointwise regular
F , the corresponding set of desirable gambles, DF , will satisfy the axioms for
coherence of a set of desirable gambles.

Theorem 3.7. If F is coherent and pointwise regular, then DF is a coherent
set of desirable gambles.

Proof. Axiom (D0/∈) follows from axiom (FProper) by observing that JPr(0)> 0K =
∅.

Axiom (Dλ) holds because when λ > 0, JPr(g)> 0K = JPr(λg)> 0K.
Axiom (D+): If g ∈ DF and f ∈ DF , then JPr(g)> 0K ∈ F and JPr(f)> 0K ∈

F . So JPr(g) > 0 and Pr(f) > 0K ∈ F by axiom (F∩). If P (g) > 0 and P (f) > 0
then also P (g + f) > 0 by linearity. So g + f ∈ DF , using Proposition 3.5.

Axiom (D≩0): Suppose g ∈ G≩0. Consider some ω∗ such that g(ω∗) > 0.

If P is a linear prevision with P (ω∗) > 0, then P (g) > 0. By axiom (Freg-pw),
Jpr(ω∗)> 0K ∈ F , and therefore JPr(g)> 0K ⊇ Jpr(ω∗)> 0K is also in F by
axiom (F⊇).

3.4 Question (ii). Every coherent D can be obtained as
DF for some F .

We can also reverse the process: starting with a set of desirable gambles, D,
we can determine a probability filter FD which is the least committal filter
evaluating each g ∈ D as desirable, i.e., with JPr(g)> 0K ∈ F for each g ∈ D.

Definition 3.8. For a set of gambles D ⊆ G, define FD by:

FD := ext({JPr(g)> 0K | g ∈ D}).

Recalling the definition of ext (Definition 2.10), we see that C ∈ FD iff there
are finitely many gambles in D, some g1, . . . , gn ∈ D, with

C ⊇ JPr(g1)> 0K ∩ . . . ∩ JPr(gn)> 0K.

That is,
C ⊇ {P ∈ Prevs | P (g1) > 0 and . . . and P (gn) > 0}.

Before moving to our main result and its proof, we need some additional
setup.
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Setup 3.9. We endow G with the sup-norm or uniform norm topology, i.e., we
are working with ℓ∞(Ω). More precisely, f ∈ closure(A) iff there is a sequence
⟨gn⟩ with each gn ∈ A where supω∈Ω |f(ω)− gn(ω)| −→ 0 as n −→ ∞.

For two sets of gambles, A, B, define A + B := {a + b | a ∈ A, b ∈ B}
(Minkowski addition) and A−B := {a− b | a ∈ A, b ∈ B}.

The convex hull of a set of gambles, B, is denoted

conv(B):= {
∑n

i=1 λigi | n ∈ N \ {0}, λi > 0,
∑

i λi = 1, gi ∈ B}.

The positive linear hull of a set of gambles, B, is denoted

posi(B):= {
∑n

i=1 λigi | n ∈ N \ {0}, λi > 0, gi ∈ B}.

The cone of B, is denoted

cone(B):= {
∑n

i=1 λigi | n ∈ N \ {0}, λi ≥ 0, gi ∈ B}.

For B ̸= ∅, this is posi(B) ∪ {0}.
Within formal results, we will make use of

Sb := cone({b})− G≥0.

Illustrations of some of these notions are given in Fig. 1.

a2

a1

a3
b

Sb

cone({a1, a2, a3})

conv({a1, a2, a3})

Figure 1: An example of Sb along with conv({a1, a2, a3}) and cone({a1, a2, a3}).

Our main result is the following:

Theorem 3.10. If D is coherent, then FD is coherent and pointwise regular
and D = DFD , i.e.:

f ∈ D iff JPr(f)> 0K ∈ FD. (2)

We will prove some sublemmas which form the main moving parts of the
proof. Our first two sublemmas show why Sb is useful for our argument.

Sublemma 3.10.1.

Sb = (posi({b})− G≥0) ∪ G≤0.

Moreover, if f ∈ posi({b})− G≥0, then b ∈ posi({f}) + G≥0.
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a2

a1

a3
b

conv({a1, a2, a3})

closure(Sb)

cone({a1, a2, a3})

P ∗(g) > 0

P ∗(g) ≤ 0

Figure 2: Illustrates the proof of Sublemma 3.10.3. As Ω is finite in this illus-
tration, closure(Sb) = Sb, which was drawn in Fig. 1. When conv({a1, . . . , an})
and closure(Sb) are disjoint, a separating hyperplane can be found, which is > 0
on {a1, . . . , an} and ≤ 0 on closure(Sb).

Proof.

Sb = cone({b}) − G≥0

= (posi({b}) ∪ {0}) − G≥0

= (posi({b})− G≥0) ∪ ({0} − G≥0)

= (posi({b})− G≥0) ∪ G≤0.

If f ∈ posi({b})− G≥0 then f = µb− h with µ > 0. Thus b = 1/µ(f + h) =
1/µf + 1/µh. As µ > 0 also 1/µ > 0, so 1/µf ∈ posi({f}) and 1/µh ∈ G≥0, showing
that b ∈ posi({f}) + G≥0.

From which we can show:

Sublemma 3.10.2. If D is coherent and D ∩ Sb ̸= ∅, then b ∈ D.

Proof. We first note that for coherent D, f ∈ G≤0 implies f /∈ D. This is a
standard property of coherent sets of desirable gambles. We can prove it directly
as follows: By axiom (D0/∈), 0 /∈ D. For f ∈ G≤0 \ {0}, −f ∈ G≩0 so −f ∈ D by

axiom (D≩0). If also f ∈ D then f +−f = 0 ∈ D by axiom (D+), contradicting

axiom (D0/∈). Therefore, for all f ∈ G≤0, we have f /∈ D.
We can then use Sublemma 3.10.1 to see that for any f ∈ D ∩ Sb, it must

be that f ∈ posi({b})− G≥0 and therefore b ∈ posi({f}) + G≥0. So b = λf + h
for some h ∈ G≥0 and λ > 0. By axiom (Dλ), λf ∈ D. If h = 0 then already we
have b ∈ D. Otherwise h ∈ G≩0 in which case h ∈ D by axiom (D≩0), and thus

b = λf + h ∈ D by axiom (D+).

The significant work done to prove our main theorem is in the next lemma,
illustrated in Fig. 2.

Sublemma 3.10.3. If conv({a1, . . . , an}) and closure(Sb) are disjoint, then there
is a linear prevision, P ∗ such that P ∗(ai) > 0 for all a1, . . . , an and P ∗(b) ≤ 0.

This is proved by means of a separating hyperplane theorem.
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Proof. We will make use of the version of the separating hyperplane theorem
given in Theorem 2.5 of Klee [30].16

Recall that we are working with the space of gambles with the sup-norm
topology, i.e., ℓ∞(Ω), which is a locally convex topological linear space.

Assume that conv({a1, . . . , an}) and closure(Sb) are disjoint, as in the as-
sumption of the theorem.

Sb = cone({b})− G≥0, with both cone({b}) and G≥0 being convex cones, so
it is also a convex cone. Thus, closure(Sb) is a closed convex cone.

conv({a1, . . . , an}) can be extended to cone({a1, . . . , an}), which is a locally
compact closed convex cone. By assumption that conv({a1, . . . , an}) is disjoint
from closure(Sb), cone({a1, . . . , an}) and closure(Sb) only intersect at 0.

So by the separating hyperplane theorem for cones of Klee [30, Theorem
2.5], we can find a continuous linear functional T such that T (g) > 0 for all g
where g ∈ posi({a1, . . . , an}) and −g /∈ posi({a1, . . . , an}), and T (f) ≤ 0 for all
f ∈ closure(Sb).

Since 0 ∈ Sb, by our disjointness assumption, 0 /∈ conv({a1, . . . , an}) and
therefore also 0 /∈ posi({a1, . . . , an}). This ensures that for all g with g ∈
posi({a1, . . . , an}), we have −g /∈ posi({a1, . . . , an}), otherwise we would have
that 0 ∈ posi({a1, . . . , an}). Therefore, in fact T (g) > 0 for all g ∈ posi({a1, . . . , an}),
and thus, in particular, for a1, . . . , an.

For any g ≥ 0, −g ∈ Sb, and thus T (−g) ≤ 0 so T (g) ≥ 0. Thus T is a
positive linear functional and therefore a monotone linear functional.

It remains to show that T can be normalised for which we require that
T (1Ω) > 0. Note that we already have that T (a1) > 0. As a1 is bounded and
non-zero, supω∈Ω |a1(ω)| is finite and non-zero. Put λ := 1/supω∈Ω |a1(ω)| > 0.
Then observe that λa1(ω) ≤ 1 for each ω ∈ Ω, so λa1 ≤ 1Ω. Since T is a
monotone linear functional, then T (1Ω) ≥ T (λa1) = λT (a1) > 0. Thus, T can
be normalised, and once T is normalised, it is our required linear prevision.

These sublemmas can be combined fruitfully in the case where Sb is closed.
This is guaranteed when Ω is finite, as will be shown in Sublemma A.1.2, but
since we are interested in the case where Ω may be infinite we need to impose
an alternative restriction to ensure it is closed (Example 3.16). We can show
that when b /∈ G≩0 then it is closed.

Sublemma 3.10.4. If b /∈ G≩0, then Sb is closed.

Proof. Observe that G≥0 is a closed convex cone, and cone({b}) is a convex cone
which is finitely generated and thus closed and locally compact.

If b /∈ G≩0, then G≥0 and cone({b}) only intersect at 0, and thus, by Theorem

2.1 of Klee [30], Sb = cone({b})− G≥0 is closed.

We now show how these sublemmas can be combined to construct a proof of
Theorem 3.10.

16One can alternatively prove this with a more standard separation theorem than the one
for cones. For example, using Schechter [48, HB19] we can separate conv({a1, . . . , an}) from
closure(SB), obtaining a linear functional T such that min{T (ai) | i = 1, . . . , n} > sup{T (f) |
f ∈ closure(SB)}. To show that T is monotone, one then additionally needs to show that

sup{T (f) | f ∈ closure(SB)} ≤ 0. If T (f) > 0 then put λ >
T (a1)
T (f)

> 0 and note that

T (λf) = λT (f) > T (a1). Moreover, λf ∈ closure(SB), as it is a cone; contradicting the
separation. Thanks to Arthur Van Camp for the reference and discussion.
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Proof of Theorem 3.10. Assume D is coherent. We will first show that D = DFD ,
i.e, Eq. (2), before checking that FD is coherent and pointwise regular.

For any b ∈ D we have JPr(b)> 0K ∈ FD by construction. The interesting
direction is the converse, that is, if JPr(b)> 0K ∈ FD then b ∈ D.

By definition of FD, if JPr(b)> 0K ∈ FD then there are some a1, . . . , an ∈ D
where JPr(b)> 0K ⊇ JPr(a1)> 0K∩ . . .∩ JPr(an)> 0K. We need to show that this
entails that b ∈ D.

By Sublemma 3.10.3, conv({a1, . . . , an}) and closure(Sb) must be non-disjoint,
otherwise we would find some linear prevision violating the superset claim.

If b ∈ G≩0, then b ∈ D by axiom (D≩0).

Otherwise b /∈ G≩0. In which case, by Sublemma 3.10.4, Sb is closed, and thus

in fact conv({a1, . . . , an}) and Sb are non-disjoint. Let f ∈ conv({a1, . . . , an}) ∩
Sb. Then f ∈ D by axioms (Dλ) and (D+), showing that D ∩ Sb ̸= ∅. By
Sublemma 3.10.2, then b ∈ D, as required.

We have thus shown that if D is coherent and there are some a1, . . . , an ∈ D
where JPr(b)> 0K ⊇ JPr(a1)> 0K ∩ . . . ∩ JPr(an)> 0K then b ∈ D, as required.
This gives us that D = DFD , i.e., Eq. (2).

It remains to show that FD is coherent and pointwise regular.
By definition of ext, FD satisfies axioms (F∩) and (F⊇). By axiom (D≩0),

D ≠ ∅, so FD satisfies axiom (F ̸=∅). To observe that FD satisfies axiom (FProper),
observe that ∅ = JPr(0)> 0K /∈ FD, by our proved Eq. (2) and by axiom (D0/∈)
giving us 0 /∈ D.

For pointwise regularity, since 1ω ∈ G≩0 by axiom (D≩0), by Eq. (2),

JPr(1ω)> 0K = Jpr(ω)> 0K ∈ FD.

An immediate corollary of Theorem 3.10 is:

Corollary 3.11. For distinct coherent D and D′, FD and FD′ are distinct.

Proof. This follows immediately from Eq. (2).

This tells us that the probability filter framework is at least as informative
as that of coherent set of desirable gambles model. In fact it will go beyond
this, which we will discuss in the next section. However first it is illustrative to
consider an example of a coherent set of gambles which is not representable by a
single set of probabilities. By Theorem 3.10, however, it is representable by a
probability filter.

Example 3.12. Fix Ω = {H,T}, representing the outcomes of a coin toss.
Consider D∗ given by g ∈ D∗ iff g(H) + g(T) > 0, or g(H) = −g(T) and
g(H) > 0. This is illustrated in Fig. 3.

In particular, we have:

b := ⟨0.5,−0.5⟩ ∈ D∗.

aϵ := ⟨−0.5, 0.5⟩+ ⟨ϵ, ϵ⟩ = ⟨−0.5 + ϵ, 0.5 + ϵ⟩ ∈ D∗ for ϵ any positive real.

So, for example a0.001 = ⟨−0.499, 0.501⟩ ∈ D∗.
Observe that P (b) > 0 iff P (H) > 0.5. And that P (aϵ) > 0 iff P (H) < 0.5+ ϵ.

We thus see that there is no P ∗ ∈ Prevs where P ∗(g) > 0 for all g ∈ D∗. (See
also [45, p.20].)

D∗ is, however, a coherent set of desirable gambles, and it can be represented
in the probability filter framework due to Theorem 3.10. FD∗ will have that
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D∗

H

T

aϵ

b

Figure 3: A coherent set of desirable gambles given by g ∈ D∗ iff g(H)+g(T) > 0
or g(H) = −g(T) and g(H) > 0.

JPr(b) > 0K = JPr(H) > 0.5K ∈ FD∗ and JPr(aϵ) > 0K = JPr(H) < 0.5+ϵK ∈ FD∗

for each positive real ϵ. It can in fact then be checked that FD∗ is identical to
FInfBiased, as in Example 2.6.

3.5 Without regularity

Before moving to discuss question (iii), we discuss what can be maintained of
our results if the pointwise regularity of the probability filters is dropped.

In this case, axiom (D≩0) must also be dropped, at least if we keep the
identification of desirability from filters in accordance with Definition 3.4, that
is, as the judgement that a gamble has positive expected payout. We are able
to obtain amended versions of our results Theorems 3.7 and 3.10. What this
then provides is a characterisation of the axioms on desirable gambles which
matches consistency and closure under finitary probabilistic entailment amongst
judgements of gambles having positive expected value. We leave the proofs of
all the results in this section to the appendix.

In the case of finite Ω, the axioms we will need on desirable gambles are
the remaining axioms, (D0/∈), (Dλ), (D+), and two additional axioms to replace
axiom (D≩0):

(Dinf>0) If inf(g) > 0, then g ∈ D.

(D≥) If g ∈ D and f ≥ g, then f ∈ D.

See Van Camp and Seidenfeld [62, §2.3] for a discussion of axiom (D≥).

Theorem 3.13. If F is coherent, then DF satisfies axioms (D0/∈), (Dλ), (D+)
(Dinf>0) and (D≥)

When Ω is finite, we can also show that these axioms are sufficient for
representation by a probability filter.

Theorem 3.14. Suppose Ω is finite. If D satisfies axioms (D0/∈), (Dλ), (D+)
(Dinf>0) and (D≥), then FD is coherent and D = DFD .

This works when Ω is finite because then Sb is guaranteed to be closed.
When Ω is infinite, however, this will not work and we will need to add an

extra axiom on desirability to get the frameworks to match.
To get representation of D by a probability filter, the Archimedean axiom

would suffice [13, Def.22].
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(DArch) If f ∈ D then there is some ϵ > 0 such that f − ϵ ∈ D.

We are here using ϵ as the constant gamble returning a value of ϵ in every ω.
However, it is too strong. There are coherent F where DF does not satisfy

axiom (DArch). Axiom (DArch) implies that D is an open set, which is not
true for all coherent D (Example 3.12), which, as we have already seen, are
representable by probability filters due to Theorem 3.10. Instead, we propose
imposing a weaker axiom:

(DArchCl) If f ∈ D and for all ϵ > 0, g ∈ posi({f − ϵ}) + G≥0, then g ∈ D.

Unlike axiom (DArch), this is satisfied on all DF :

Theorem 3.15. If F is coherent, then DF satisfies axiom (DArchCl)

Theorem 3.15 along with our forthcoming Theorem 3.17 show us that these
axioms are exactly what’s needed to characterise judgements of gambles having
positive expected value arising from probability filters, i.e., being closed and
consistent under finite probabilistic entailment. When Ω is finite, it can be
simplified by dropping axiom (DArchCl), as shown in Theorems 3.13 and 3.14.

When Ω is finite, or when axiom (D≩0) is imposed, axiom (DArchCl) follows

from the remaining axioms (as a consequence of Theorems 3.10, 3.14 and 3.15).
But not when we drop axiom (D≩0) and allow Ω to be infinite.

Example 3.16. Let Ω = N and consider gamble a given by a(n) = 1/n for all
n > 0 and a(0) = 0. Let D = posi({a}) + G≥0. This satisfies axioms (D0/∈), (Dλ)
and (D+) and axioms (Dinf>0) and (D≥) but not axiom (DArchCl).

To see this, consider gamble b given by b(n) = 1/n2 for all n > 0 and b(0) = 0.
In Section A.4 we will show that b /∈ D but b ∈ posi({a− ϵ})+G≥0 for any ϵ > 0.

This is also an example where Sb is not closed, as a− ϵ ∈ Sb for each ϵ but
a /∈ Sb.

Having shown that axiom (DArchCl) is not too strong to match the notion
of desirability obtained by probability filters, we can then see that it is strong
enough to get representation by a probability filter, showing that these are
exactly the axioms on desirability judgements derived from coherent probability
filters.

Theorem 3.17. If D satisfies axioms (D0/∈), (Dλ), (D+) (Dinf>0), (D≥) and
(DArchCl), then FD is coherent and D = DFD .

This works because it allow us to move directly from D ∩ closure(Sb) ̸= ∅ to
that b ∈ D.

3.6 Question (iii). Probability filters go beyond desirability
of gambles.

The probability filter model goes beyond the model of desirable gambles, as
shown by the next theorem.

Theorem 3.18. There are distinct coherent probability filters F and F ′ where
DF = DF ′ .
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Proof. Take any non-convex C∗ ⊆ Prevs, e.g., JPr(H) = 0.2 or Pr(H) = 0.3K,
and let B be its convex closure, which would be J0.2 ≤ Pr(H) ≤ 0.3K.

Then P (g) > 0 for all P ∈ C∗ implies also P (g) > 0 for any P ∈ B.
And so, DFC∗ = DFB

by Corollary 3.6.
However, FC∗ ̸= FB , for example, B /∈ FC∗ .

This argument makes use of probability filters which are characterised by
non-convex probability constraints. In Section 4.7 we will provide an example
of two probability filters which are both characterised by convex probability
constraints but which result in the same set of desirable gambles.

In line with Section 2.4, if one wished to restrict the expressive power of the
probability filter framework to make it equivalent to that of desirable gambles,
one could add an additional axiom which ensures that F is characterised by its
judgements on probability constraints of the form JPr(g)> 0K. This is given by
the following axiom:

(FD) If C ∈ F then there are some finitely many gambles g1, . . . , gn with
JPr(gi)> 0K ∈ F for each gi and

C ⊇ JPr(g1)> 0K ∩ . . . ∩ JPr(gn)> 0K.

This axiom ensures that F is determined by its treatment of the probability
constraints of the form JPr(g)> 0K. By Theorem 3.18 we know that this won’t
hold for all coherent F , but we can guarantee this if we restrict to the probability
filters that satisfy axiom (FD).

Proposition 3.19. For every coherent D, FD satisfies axiom (FD). Also, if F
is a probability filter satisfying axiom (FD) then F = FDF .

Proof. To show that every FD satisfies axiom (FD), we see by the definition of
FD (Definition 3.8) that C ∈ FD iff there are finitely many g1, . . . , gn ∈ D with

C ⊇ JPr(g1)> 0K ∩ . . . ∩ JPr(gn)> 0K.

And observe that JPr(gi)> 0K ∈ FD, so we have axiom (FD).
To show that F = FDF , we also consult the definition of DF (Definition 3.4)

and see that

C ∈ FDF iff

there are some g1, . . . , gn

with JPr(gi)> 0K ∈ F for each i

and C ⊇ JPr(g1)> 0K ∩ . . . ∩ JPr(gn)> 0K.

So axiom (FD) exactly guarantees that F ⊆ FDF . We also have FDF ⊆ F just
by Proposition 2.7.

3.7 Updating and Conditionalisation

We presented conditionalisation in terms of probabilities and the ratio formula.
When considered as linear previsions, this corresponds to:

Definition 3.20. For P (1E) > 0, P (g | E) := P (1Eg)
P (1E) .
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This is equivalent to Bayesian conditionalisation as in Section 2.6 as 1E1F =
1E∩F . Observe the following:

Proposition 3.21. Suppose P (1E) > 0. Then P (g | E) > 0 iff P (1Eg) > 0.

Proof. Follows immediately from the definition.

We defined conditionalisation in Section 2.6 which we can apply also to the
linear previsions setting to determine F|E from F . We repeat the definition now
applied to previsions:

Definition 3.22.

F|E =

{
D ⊆ Prevs

∣∣∣∣ there is C ∈ F and C ⊆ JPr(1E)> 0K
with D ⊇ {P (· | E) | P ∈ C and P (1E) > 0}

}
A natural question is then how DF|E relates to DF? We can show that it

is characterised by one’s prior judgements of the called-off gambles. That is, it
matches exactly the notion of E-desirability of a gamble as given by Walley [67].

Proposition 3.23. Suppose F is coherent and pointwise regular. Then g ∈ DF|E
iff 1Eg ∈ DF .

Proof. We are required to show that JPr(g)> 0K ∈ F|E iff JPr(1Eg)> 0K ∈ F .

JPr(g)> 0K ∈ F|E iff there is some C ∈ F such that

P (g | E) > 0 for all P ∈ C with P (1E) > 0.

iff there is some C ∈ F such that

P (1Eg) > 0 for all P ∈ C with P (1E) > 0.

If JPr(1Eg)> 0K ∈ F then this is exactly such a C, as P (1E) > 0 for all P with
P (1Eg) > 0. This gives us that JPr(1Eg)> 0K ∈ F implies JPr(g)> 0K ∈ F|E.

For the converse: suppose there is such a C, i.e., C ∈ F where P (1Eg) > 0
for all P ∈ C with P (1E) > 0. Then for every P ∈ C ∩ JPr(1E)> 0K, P (1E) >
0 and so P (1Eg) > 0, so C ∩ JPr(1E)> 0K ⊆ JPr(1Eg)> 0K. By pointwise
regularity, JPr(1E)> 0K ∈ F , and therefore C ∩ JPr(1E)> 0K ∈ F giving us that
JPr(1Eg)> 0K ∈ F by axiom (F⊇).

Note that DF|E violates axiom (D≩0). This is not a conflict with Theorem 3.7

because the updated F|E is not pointwise regular. Instead, it is merely pointwise
regular on E. The resultant set of gambles will be irregularly coherent in the
sense of Theorem 3.13.

In work on conditioning for sets of desirable gambles [see 15, §3.2], authors
restrict to just those gambles defined on E. To keep the conditionalisation
on filters as a generalisation of Bayesian conditioning of probabilities or linear
previsions, where it is standard to not change the space of possible outcomes,
we have not pursued this.
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4 Probability filters and choice functions

4.1 Choice functions

Choice functions provide a more general model of uncertainty than coherent sets
of desirable gambles, which can be seen as restricting attention to binary choice
[53]. They have been studied in detail by Gert de Cooman, Jasper De Bock and
Arthur Van Camp [12, 13, 60, 16], whose formalism of the choice functions model
is to consider which gamble sets are desirable instead of just which individual
gambles are desirable. This clearly extends the model of desirable gambles just
considered. We adopt their approach as our understanding of the model of choice
functions. The connection to choice is spelled out in [12].

We linked a judgement of a gamble as desirable to the credal judgement that
the expected payout of the gamble is strictly positive. What does a gamble set
being judged as desirable correspond to? It is glossed as that some member
of the set is desirable, but there are two ways that this can be considered and
linked to the probability filter framework.

We propose understanding that a gamble set is desirable for an agent whose
belief state is captured by F just if she is committed to the probability con-
straint that some member of the set has positive expected value. That is, when
Jthere is some g ∈ A with Pr(g) > 0K ∈ F . There need not need to be any in-
dividual member of the set which she judges to have positive expected value.
This is the association that we will adopt for this paper.

Definition 4.1. For a probability filter, F , define a set of gamble sets KF by:

KF := {B ⊆ G | Jthere is some g ∈B with Pr(g) > 0K ∈ F}

If one then uses these assessments to rationalise the behaviour in choice-
theoretic scenarios in the way described in De Bock and De Cooman [12], this
is to apply Levi’s rule of E-admissibility [36, 37], or rather a generalisation of
it which applies to all probability filters rather than just those that arise from
credal sets.

There are alternative prominent decision procedures for credal sets, in partic-
ular Maximality [67, 55]. To instead obtain the recommendations in accordance
with Maximality by still using the same association as in [12], we could instead
adopt an alternative definition:

KMax
F := {B ⊆ G | there is some g ∈B with Jpr(g) > 0K ∈ F}

This requires that some particular member of the set must be such that you
judge it as having positive expected value, as opposed to holding the judgement
that some member has positive expected value but not being able to commit to
any particular one.

In this paper, we will continue to work with KF based on E-admissibility.
This is in line with Seidenfeld et al. [53] who is focused on choice functions
derived from credal sets by E-admissibility. De Cooman, De Bock and Van Camp
[60, 12, 13, 16] instead wish to provide a notion of coherence for choice functions
which will allow for both those choice functions derived from Maximality and
those derived from E-admissibility as coherent. We will discuss this and their
more general framework in Section 4.4.
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We have now specified how we determine a set of desirable gamble sets
from a given probability filter: we have adopted Definition 4.1, generalising
E-admissibility to the probability filter framework.

We now present our key questions, paralleling those we asked in the desirable
gambles framework.

(i) Is every KF coherent?

(ii) Does the probability filter framework encompass the choice functions
framework? Can every coherent K be obtained as KF for some coherent
probability filter, F?

(iii) Does the probability filter framework go beyond that of coherent sets of
desirable gamble sets? I.e., are there distinct F and F ′ where KF = KF ′?

To give answers to these questions we will need to specify a notion of coherence
for sets of desirable gamble sets, which is what we turn to in the next section.

4.2 Question (i). Every KF is coherent.

The axioms that we impose for coherence of sets of desirable gamble sets are
essentially an instance of the general axioms for sets of desirable sets of things
of de Cooman et al. [16, §2.3]. We will merely impose what these authors call
finite coherence, but we simply call it coherence.

Note that in this, and as in de Cooman et al. [16, §2.3], we are considering
also infinite sets of gambles to be evaluated, unlike Van Camp [60], De Bock and
de Cooman [12, 13].

Definition 4.2. K ⊆ ℘(G) is coherent if it satisfies

(K∅) ∅ ̸∈ K

(K⊇) If A ∈ K and B ⊇ A, then B ∈ K

(K\{0}) If A ∈ K then A \ {0} ∈ K.

(K≩0) If g ∈ G≩0, then {g} ∈ K.

(Kconv) If A1, . . . , An ∈ K and for each sequence ⟨g1, . . . , gn⟩ ∈ A1 × . . . × An,
f⟨g1,...,gn⟩ is some member of conv({g1, . . . , gn}), then {f⟨g1,...,gn⟩|⟨g1, . . . , gn⟩ ∈
A1 × . . .×An} ∈ K.

(Kscalar) If A ∈ K and for each g ∈ A, λg > 0 then {λgg | g ∈ A} ∈ K.

(K≥) If A ∈ K and for each g ∈ A, fg is some gamble where fg ≥ g, then {fg |
g ∈ A} ∈ K.

To stay closer to the formulation of de Cooman et al. [16, Axiom Kfin
5 ], we

could instead combine axioms (Kconv) to (K≥) into a single axiom that has the
same form as axiom (Kconv) but replaces posi({g1, . . . , gn}) with posi({g1, . . . , gn})+
G≥0. Or even to also combine it with axiom (K≩0) and use posi({g1, . . . , gn} ∪
G≩0). We have elected to keep the axioms separate as we find it more perspicuous
to be able to individually refer to them in our proofs. It is also advantageous to
keep axiom (K≩0) as a separate axiom as it will be all that is changed when we
consider probability filters which need not be pointwise regular Section 4.6.
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Using these axioms, one can give an affirmative answer to our first question,
i.e., every KF is coherent. In fact, this can be seen as a consequence of the general
results of de Cooman et al. [16, Theorem 25] (which were based on an early version
of this paper, Campbell-Moore [6]), which show that coherent sets of desirable
gamble sets can be obtained as filters of coherent sets of desirable gambles. By
adopting Definition 4.1, the choice functions derived from probability filters are
exactly those derived from filters of certain kinds of coherent sets of desirable
gambles, those obtained from probability functions. Since they show that all
filters of coherent sets of desirable gambles generate coherent choice functions,
these do too.

We however include a direct proof because of its importance for this paper.
In fact, we also include our further axiom, axiom (K≩0) which De Cooman et

al. [16] do not, at least in the instance of the results they consider, although it
would nonetheless follow from their more general results.

Proposition 4.3. If F is coherent and pointwise regular, then KF is coherent.

Proof. The definition of KF is that B ∈ KF iff J∃h∈B : Pr(h)> 0K ∈ F . We
check each of the axioms.

Axiom (K∅) follows from axiom (FProper) as J∃h∈∅ : Pr(h)> 0K = ∅ /∈ F .
Axiom (K\{0}): Note that P (0) = 0. So for every p, if g ∈ A with P (g) > 0,

then g ∈ A \ {0}; thus J∃h∈A : Pr(h)> 0K ⊆ J∃h∈A \ {0} : Pr(h)> 0K; so
J∃h∈A : Pr(h)> 0K ∈ F implies J∃h∈A \ {0} : Pr(h)> 0K ∈ F by axiom (F⊇),
as required.

Axiom (K⊇) follows from axiom (F⊇) becauseB ⊇ A implies J∃h∈B : Pr(h)> 0K ⊇
J∃h∈A : Pr(h)> 0K.

Axiom (K≥): observe that if P (g) > 0 then P (fg) > 0, so it holds by
axiom (F⊇).

Axiom (Kscalar): observe that if P (g) > 0 then P (λgg) > 0, so P ∈
J∃h∈A : Pr(h)> 0K =⇒ P ∈ J∃h∈{λgg | g ∈ A} : Pr(h)> 0K. Thus ax-
iom (Kscalar) holds by axiom (F⊇).

Axiom (Kconv): LetB = {f⟨g1,...,gn⟩|⟨g1, . . . , gn⟩ ∈ A1, . . . , An} with f⟨g1,...,gn⟩ ∈
posi({g1, . . . , gn}).

First observe that if f⟨g1,...,gn⟩ ∈ posi({g1, . . . , gn}) and P is a linear previ-
sion with P (gi) > 0 for all gi, then also P (f⟨g1,...,gn⟩) > 0 by their linearity:
P (f⟨g1,...,gn⟩) = P (

∑
i λigi) =

∑
i λiP (gi) > 0.

If P ∗ ∈ J∃h∈A1 : Pr(h)> 0K∩ . . .∩J∃h∈An : Pr(h)> 0K then there is some
g∗1 ∈A1, . . ., g

∗
n ∈An with P ∗(g∗i ) > 0 for each i. Thus, P ∗(f⟨g∗

1 ,...,g
∗
n⟩) > 0. Thus

P ∗ ∈ J∃h∈B : Pr(h)> 0K.
We have thus shown that J∃h∈A1 : Pr(h)> 0K∩. . .∩J∃h∈An : Pr(h)> 0K ⊆

J∃h∈B : Pr(h)> 0K
So ifA1, . . . , An ∈ KF , then J∃h∈A1 : Pr(h)> 0K, . . . , J∃h∈An : Pr(h)> 0K ∈

F , and thus J∃h∈B : Pr(h)> 0K ∈ F by Proposition 2.7, giving us B ∈ KF .
Axiom (K≩0): Suppose f ∈ G≩0. Consider some ω∗ such that f(ω∗) > 0.

If p is a probability with p(ω∗) > 0, then P (f) > 0. By axiom (Freg-pw),
Jpr(ω∗)> 0K ∈ F , and therefore J∃h∈{f} : Pr(h)> 0K ⊇ Jpr(ω∗)> 0K is also in
F by axiom (F⊇).

For this is true, it is important that we have not extended given an infinite
combination axiom, as De Cooman et al. [16] do in their K5, calling our axiom
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system finitely coherent. For their notion of ‘coherence’ they include the following
axiom:17

(Kinfconv) If Ai ∈ K for each i ∈ I (where I is possibly infinite) and for each sequence
⟨gi⟩i∈I with gi ∈ Ai for each i ∈ I, f⟨gi⟩i is some member of conv({gi |
i ∈ I}), then {f⟨gi⟩i | ⟨gi⟩i ∈×i∈I

Ai} ∈ K

This is also adopted in De Bock [11]. But it is not satisfied in every KF .

Proposition 4.4. Coherent and pointwise regular F may result in a set of
desirable gamble sets, KF , which violate axiom (Kinfconv).

Proof. Fix Ω = {H,T} and consider FInfBiased as in Example 2.6 (see also
Example 3.12); that is JPr(H) > 0.5K ∈ FInfBiased and also JPr(H) < 0.5 +
ϵK ∈ FInfBiased for every positive real number ϵ. Consider the gambles as in
Example 3.12

aϵ := ⟨−0.5, 0.5⟩+ ⟨ϵ, ϵ⟩ = ⟨−0.5 + ϵ, 0.5 + ϵ⟩ for ϵ any positive real.

So, for example a0.001 = ⟨−0.499, 0.501⟩.
Observe that P (aϵ) > 0 iff P (H) < 0.5 + ϵ. Thus, since JPr(H) < 0.5 + ϵK ∈

FInfBiased for each positive real ϵ, each singleton {aϵ} is in KFInfBiased
.

Consider also

A∗ := {−aϵ | ϵ a positive real}

Consider any linear prevision, or probability, P with P (H) > 0.5. Since they
are real-valued, there must be some positive real ϵ with P (H) > 0.5 + ϵ. For
this ϵ, then, P (−aϵ) > 0. Therefore J∃h∈A∗ : Pr(h)> 0K ⊇ JPr(H) > 0.5K.
Thus, since JPr(H) > 0.5K ∈ FInfBiased, using Definition 4.1, we have that
A∗ ∈ KFInfBiased

.
We can now show that axiom (Kinfconv) fails for KFInfBiased

. Consider the
infinitely many sets A1 = A∗, A2 = {a1/2}, A3 = {a1/3}, and so on. We have
observed that each is a member of KFInfBiased

.
To evaluate axiom (Kinfconv), we need to work with sequences ⟨gi⟩ where

gi ∈ Ai for each i. Such sequences must have the form ⟨−aϵ, a1/2, a1/3, . . .⟩ where
ϵ is a positive real. For each ϵ, when n ≥ 1/ϵ then ϵ ≥ 1/n so −aϵ + a1/n ≤ 0.
Put fϵ = −aϵ + a1/Nϵ

for some Nϵ ≥ 1/ϵ. Axiom (Kinfconv) would require
that {fϵ | ϵ > 0} ∈ KFInfBiased

. But since fϵ ≤ 0, P (fϵ) ≤ 0 for all P ; thus
J∃h∈{fϵ | ϵ > 0} : Pr(h)> 0K = ∅ /∈ F .

It is also important that the Archimedean axiom of De Bock and de Cooman
[13, §9] is not imposed [see also 53, AA3]. More generally, it is important that
we have not added any further axioms which are not derivable from the axioms
in Definition 4.2 along with that of Definition 4.5. This is a consequence of our
main result in the next section, Theorem 4.8, which shows that every set of
desirable gamble sets satisfying these axioms is obtained from some probability
filter. So any axiom that goes beyond the specified axioms must fail for some
KF .

17They actually give a more general version of it, involving the ‘closure’ notion in general. It
certainly entails this axiom (Kinfconv).
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4.3 The mixing axiom

However, using these axioms, we obtain a negative answer to our second question:
some coherent K cannot be represented as KF . This is because of our choice to
associate a filter with a choice function using the analogue of E-admissibility.

There is a further axiom which is considered in De Bock and de Cooman
[13, §8] which restricts to those choice functions determined in accordance with
E-admissibility.18

This is not an axiom which they endorse. Following Van Camp [60], they
will also allow as coherent those choice functions which are derived from a credal
set in accordance with Maximality, as well as a whole range of yet unconsidered
choice functions which are coherent.

Since we are deriving a choice function from a probability filter by a gener-
alisation of E-admissibility, it is a principle that we obtain. To consider also
representation of the non-mixing choice functions, De Cooman et al. [16] consider
a more general framework, which we will discuss in Section 4.4.

The mixing axiom they give is closely related to Seidenfeld et al. [53, Axiom
2b]. We give the axiom in an analogous way to De Bock and de Cooman [13,
§8] but also consider the closure of the convex hull of a set, as Seidenfeld et al.
[53] do. This is not relevant to De Bock and de Cooman [13] as they restrict
attention to finite sets of gambles.

(KMix) If A ∈ K and clconv(B) ⊇ A ⊇ B then B ∈ K.

In fact, we will impose the two components of the mixing axiom separately
for perspicuity, allowing a reader to determine where the different components
are playing a role in the proofs.

Definition 4.5. K is mixing if it satisfies:

(KMix-conv) If A ∈ K and conv(B) ⊇ A ⊇ B then B ∈ K.

(KMix-cl) If A ∈ K and closure(B) ⊇ A ⊇ B then B ∈ K.

This is the topological closure in the sup-norm topology, or topology of uni-
form convergence. That is, if fn ∈ B and fn uniformly converge to f∗,
supω∈Ω |fn(ω)− f∗(ω)| −→ 0 as n −→ ∞, then f∗ ∈ B.

Consider {g + ϵ,−g + ϵ}. Every probability evaluates one of these to have
positive expected value, however different probability functions disagree on which.
It is thus always deemed a desirable gamble set in accordance with Definition 4.1.

Theorem 4.6. If F is coherent and pointwise regular, then KF is mixing
coherent.

Proof. In Proposition 4.3 we have already shown that KF is coherent. We now
need to show that it is mixing.

Suppose A ∈ KF , i.e., J∃h∈A : Pr(h)> 0K ∈ F , and suppose also that
conv(B) ⊇ A ⊇ B. We need to show that J∃h∈B : Pr(h)> 0K ∈ F . By
axiom (F⊇), it suffices to show that J∃h∈A : Pr(h)> 0K ⊆ J∃h∈B : Pr(h)> 0K.
Suppose P ∈ J∃h∈A : Pr(h)> 0K, so there is some f∗ ∈ A with P (f∗) > 0.

18For the connection of their paper they are considering finite gamble sets and also impose
an Archimedean axiom and show representation with a credal set.
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f∗ ∈ A ⊆ conv(B), so there are g1, . . . , gn ∈ B and λ1, . . . , λn > 0 with
f∗ =

∑
i λigi. By linearity, 0 < P (f∗) =

∑
i λiP (gi), so for at least one of these

gi ∈ B, P (gi) > 0. Thus P ∈ J∃h∈B : Pr(h)> 0K. So J∃h∈A : Pr(h)> 0K ⊆
J∃h∈B : Pr(h)> 0K, as required.

Now suppose that A ∈ KF and closure(B) ⊇ A ⊇ B. Again we just
need to show that J∃h∈A : Pr(h)> 0K ⊆ J∃h∈B : Pr(h)> 0K. Suppose P ∈
J∃h∈A : Pr(h)> 0K, so there is some f∗ ∈ A with P (f∗) > 0. f∗ ∈ A ⊆
closure(B), so f∗ ∈ closure(B). Therefore, there is some sequence ⟨hn⟩ with
each hn ∈ B and which converges uniformly to f∗. Since linear previsions
are continuous with respect to uniform convergence, P (hN ) > 0 for some N .19

Since hN ∈ B, thus P ∈ J∃h∈B : Pr(h)> 0K. We have thus shown that
J∃h∈A : Pr(h)> 0K ⊆ J∃h∈B : Pr(h)> 0K, as required.

Before moving to question (ii) and showing that every mixing coherent K is
obtained from some coherent F , we will make a detour to discuss an alternative
model, that of filters of coherent sets of desirable gambles as developed by De
Cooman et al. [16].

4.4 Filters of coherent sets of desirable gambles

In [16, Theorem 25], De Cooman et al. show that all coherent choice functions
(what they call finitely coherent choice functions) can be recovered as filters not
of probabilities (or linear previsions), as we do, but directly as filters of coherent
sets of desirable gambles.20

Instead of focusing on constraints on probabilities or linear previsions, their
filters encode constraints on coherent sets of desirable gambles. For example, it
might contain {D a coherent set of desirable gambles | g ∈ D} for a particular
gamble g. The ‘points’ in the filters are changed from probability functions (or
linear previsions) to coherent sets of desirable gambles.

This offers a more general framework than ours since distinct probability
functions determine distinct sets of desirable gambles (the Archimedean and
mixing ones). The representational power of probability filters is then exactly
that of filters of Archimedean and mixing coherent sets of desirable gambles. By
allowing also for other coherent sets of desirable gambles they obtain a more
general framework which can capture all coherent choice functions.

De Cooman et al. identify the inference mechanism behind all coherent sets
of desirable gamble sets in terms of (finitary) entailment according to sets of
desirable gambles (that is, binary judgements of comparative expectation).
We identify the inference mechanism of the coherent mixing ones by finitary
probabilistic entailment amongst credal judgements of gamble sets as having
something with positive expected value.

Many defenders of the credal set model will wish to reject all coherent choice
functions as legitimate, for example Levi [37] argues for E-admissibility, in which

19More carefully: let ϵ := P (f∗)/2 > 0. Since hn are assumed to converge uniformly to f∗,
then there is some N such that ∥hN − f∥∞ < ϵ. Thus inf{hN (ω)− f∗(ω) | ω ∈ Ω} ≥ −ϵ, so
P (hN − f∗) ≥ −ϵ. Thus P (hN ) = P (f∗) + P (hN − f∗) > ϵ+−ϵ = 0.

20This extends the results of [11, 13] showing that choice functions satisfying axiom (Kinfconv)
or those restricted to finite gamble sets respectively are recovered from sets of coherent sets of
desirable gambles, or equivalently, the principal filters of Ds, in the same way that credal sets
are equivalent to principal probability filters.

33



case the more restricted representational power of the probability filter model is
acceptable.

Alternatively, to allow for all coherent choice functions, we suggest that
one could use probability filters as the model of the belief state of the agent
and include an explicit parameter describing how she structures her choices,
or reduces judgements of a gamble set being desirable to matters of binary
comparisons.21 This parallels the idea of having a credal set and making a
decision in accordance with a choice rule such as E-admissibility or Maximality.
One then offers rationalising explanations for an agent’s choice behaviour in
terms of her beliefs, taking the form of a probability filter, plus her desires and
her approach to structuring choices.22 Specifying the form of this parameter
in a way which allows all coherent choice functions to be derived is a topic of
future investigation.

This is not merely a matter of relabelling components of the choice function
into a ‘belief’ component, having the form of a probability filter, and a ‘choice-
mechanism’ component. If we assume a certain amount of variation in these
parameters as legitimate, they cannot be recovered from knowing the agent’s
choice function. Distinct credal sets may result in different choice functions in
accordance with E-admissibility whilst nonetheless resulting in the same choice
function under Maximality. So one’s choice function does not include enough
information to determine one’s belief state and choice mechanism. One might
argue that this is the right diagnosis: that there are no such differences of opinion
without a difference in decision making recommendations, i.e., in associated
choice functions. But a more epistemic approach to belief might consider these
distinctions to be important, as is prominent for example in Joyce [28]. This
also results in the slightly odd result that which differences in credal set are
representationally significant depends on one’s personal approach to choice, even
though different approaches are acceptable. What this indicates is that it requires
a full-blown replacement of the idea of credal sets as a model of belief.

An advantage of the probability filter model is its close connection with
the prominent credal set models. We are arguing in this paper that it is a
modification of that model which allows it to avoid the challenges to the credal
set model given by Walley [68].

The results of this paper also have value without accepting the probability
filters as a model of belief. One way to view our results is to provide an inde-
pendent notion of the logic of desirability via the notion of finitary probabilistic
entailment amongst judgements of gambles having positive expected value. It
is then of significant interest that it matches usual axioms of coherence on
desirable gambles. Whilst the analogue results become much simpler in the
formalism of filters of coherent sets of desirable gambles, requiring no hyperplane
separation result, they do not show this feature. Our results are valuable in that
they highlight a tight connection between axioms of desirability and the laws of
probability.

21See also Buchak [4, p.53-54] for an explicit discussion of including an further parameter
which plays the role in structuring choices.

22Joyce [25, §1.3] argues that it is very important to provide such rationalizing explanations
for choice behaviour. He uses this as a criticism of behaviourism.
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4.5 Question (ii). Every mixing coherent K is obtained
from some F .

We will now show that by including the mixing axiom, all mixing coherent sets
of desirable gamble sets are obtained from a probability filter. This shows us
that when we understand a judgement of a gamble set as desirable in line with
Definition 4.1, these axioms correspond to such judgements being consistent and
closed under finitary probabilistic entailment, along with the assumption that
each possible outcome has positive probability to get axiom (K≩0).

Definition 4.7. For a set of sets of gambles, K ⊆ ℘(G), define FK by:

FK := ext({J∃h∈A : Pr(h)> 0K |A ∈ K})

Recalling the definition of ext, we have C ∈ FK iff there are some finitely
many gamble sets, A1, . . . , An ∈ K with

C ⊇ J∃h∈A1 : Pr(h)> 0K ∩ . . . ∩ J∃h∈An : Pr(h)> 0K

That is,

C ⊇

P ∈ Prevs

∣∣∣∣∣∣
∃h1∈A1 s.t. P (h1) > 0
and . . .
and ∃hn∈An s.t. P (hn) > 0

.

Theorem 4.8. For any mixing coherent set of desirable gamble sets, K, FK is
coherent and pointwise regular and K = KFK , i.e.,

B ∈ K iff J∃h∈B : Pr(h)> 0K ∈ FK (3)

Let
SB := cone(B)− G≥0.

This extends the notion Sb as used in Theorem 3.10. Our proof is closely related
to that of Theorem 3.10.

Sublemma 4.8.1.
SB = (posi(B)− G≥0) ∪ G≤0.

Proof.

Sb := cone(B) − G≥0

= (posi(B) ∪ {0}) − G≥0

= (posi(B)− G≥0) ∪ ({0} − G≥0)

= (posi(B)− G≥0) ∪ G≤0.

Sublemma 4.8.2. Suppose K is coherent and mixing. If closure(SB) ∈ K then
B ∈ K.

Proof. By Sublemma 4.8.1, SB \ G≤0 ⊆ posi(B)− G≥0

We can then argue as follows:

closure(SB) ∈ K =⇒ SB ∈ K axiom (KMix-cl)

=⇒ SB \ G≤0 ∈ K axioms (K\{0}) and (K≥)

=⇒ posi(B)− G≥0 ∈ K axiom (K⊇)

=⇒ posi(B) ∈ K axiom (K≥)

=⇒ conv(B) ∈ K axiom (Kscalar)

=⇒ B ∈ K axiom (KMix-conv)
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We now give a result which extends Sublemma 3.10.3. It is illustrated in
Fig. 4.

a2

a1

a3
b

B
conv({a1, a2, a3})

closure(Sb)

cone({a1, a2, a3})

P ∗(g) > 0

P ∗(g) ≤ 0

Figure 4: Illustrates the proof of Sublemma 4.8.3. When conv({a1, a2, a3}) and
closure(SB) are disjoint, then there is a linear prevision P ∗ with P ∗(ai) > 0 for
each i but P ∗(b) ≤ 0 for all b ∈ B.

Sublemma 4.8.3. If conv({a1, . . . , an}) and closure(SB) are disjoint, then there
is a linear prevision P ∗ with P ∗(ai) > 0 for all i but P ∗(b) ≤ 0 for all b ∈ B.

Proof. The proof is exactly as in Sublemma 3.10.3. We briefly repeat the
argument. Observe that SB is a convex cone, so closure(SB) is a closed convex
cone. cone({a1, . . . , an}) is a locally compact closed convex cone (since it is
finitely generated). By assumption that conv({a1, . . . , an}) and closure(SB) are
disjoint, cone({a1, . . . , an}) and closure(SB) intersect only at 0. So by Theorem
2.5 of Klee [30], there is a continuous linear functional T with T (ai) > 0 for each
i, and T (g) ≤ 0 for all g ∈ closure(SB). It can be checked that it is positive and
thus monotone. To show it can be normalised we show that T (1Ω) > 0. Since a1
is bounded, there is some λ > 0, such that λa1 ≤ 1Ω; and so, by monotonicity,
T (1Ω) ≥ T (λa1). By construction, T (a1) > 0, so T (1Ω) ≥ T (λa1) = λT (a1) > 0.
It can thus be normalised and obtains our required linear prevision.

Proof of Theorem 4.8. Assume K is coherent. We will first show that K = KFK ,
i.e, Eq. (3), before checking that FK is coherent and pointwise regular.

For any B ∈ K we have J∃h∈B : Pr(h)> 0K ∈ FK by construction. We need
to show the converse, that is, if J∃h∈B : Pr(h)> 0K ∈ FK then B ∈ K.

By definition of FK, if J∃h∈B : Pr(h)> 0K ∈ FK then there are some
A1, . . . , An ∈ K where J∃h∈B : Pr(h)> 0K ⊇ J∃h∈A1 : Pr(h)> 0K ∩ . . . ∩
J∃h∈An : Pr(h)> 0K. We need to show that this entails that B ∈ K.

If ⟨a1, . . . , an⟩ ∈ A1 × . . . × An with conv({a1, . . . , an}) and closure(SB)
disjoint, then by Sublemma 4.8.3, there is some linear prevision with P ∗(ai) > 0
for all a1, . . . , an and P ∗(b) ≤ 0 for all b ∈ B. Such P ∗ would then be in each
J∃h∈Ai : Pr(h)> 0K but not in J∃h∈B : Pr(h)> 0K, violating our superset
claim.

Thus, for every sequence ⟨a1, . . . , an⟩ ∈ A1× . . .×An, conv({a1, . . . , an}) and
closure(SB) are non-disjoint. By axioms (K⊇) and (Kconv), thus closure(SB) ∈ K.
Therefore B ∈ K by Sublemma 4.8.2.

We have thus shown that if K is mixing coherent and there are some
A1, . . . , An ∈ K where J∃h∈B : Pr(h)> 0K ⊇ J∃h∈A1 : Pr(h)> 0K ∩ . . . ∩
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J∃h∈An : Pr(h)> 0K then B ∈ K, as required. This gives us that K = KFK ,
i.e., Eq. (3).

It remains to show that FK is coherent and pointwise regular.
By definition of ext, FK satisfies axioms (F∩) and (F⊇). By axiom (K≩0),K ̸=

∅, so FK satisfies axiom (F̸=∅). To observe that FK satisfies axiom (FProper),
observe that ∅ = J∃h∈∅ : Pr(h)> 0K /∈ FK, by our proved Eq. (3) and by
axiom (K∅), ∅ /∈ K.

For axiom (Freg-pw): Note that J∃h∈{1ω∗} : Pr(h)> 0K = Jpr(ω∗)> 0K. By
axiom (K≩0), {1ω∗} ∈ K, thus Jpr(ω∗)> 0K ∈ FK by our proved Eq. (3).

Corollary 4.9. For distinct mixing coherent K and K′, FK and FK′ are distinct.

Proof. This follows immediately from Theorem 4.8.

4.6 Without Regularity

Before moving to discuss question (iii), we discuss what can be maintained of
our results if regularity is dropped. This then tells us exactly what corresponds
to finite probabilistic entailment when the A ∈ K is understood as a judgement
given by J∃h∈A : Pr(h)> 0K.

Definition 4.10. K is irregularly coherent replacing axiom (K≩0) of Defini-
tion 4.2 with:

(Kinf>0) If inf(g) > 0, then {g} ∈ K

Unlike the case of desirable gambles, the proof immediately applies also to
the irregular case without modification or extra axioms to be imposed, so we
directly present it in that form.

Theorem 4.11. If F is coherent, then KF is mixing irregularly coherent.

Proof. In the proof of Theorem 4.6, pointwise regularity was only used in deriving
axiom (K≩0).

Axiom (Kinf>0): If inf(g) > 0, then every P ∈ Prevs has P (g) ≥ inf(g) > 0,
so J∃h∈{g} : Pr(h)> 0K = Prevs ∈ F (axiom (F ̸=∅) and (F⊇)).

Theorem 4.12. If K is mixing irregularly coherent, then FK is coherent and
K = KFK .

Proof. The proof of Theorem 4.8 does not make use of axiom (K≩0) except to

ensure that K is non-empty, which we instead obtain from axiom (Kinf>0), and
in showing that FK is pointwise regular, which is not needed for this result.

This works even when Ω is infinite, unlike the desirable gambles case where we
needed to add axiom (DArchCl). There seems to be a close relationship between
the closure component of the mixing axiom and axiom (DArchCl), although the
exact relationship needs investigating. Note that it is not the relationship as
discussed in De Cooman et al. [16] because here the K are not being obtained as
filters of these D satisfying axiom (DArchCl) but rather both D and K are being
obtained from filters of linear previsions, or Archimedean mixing D.
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4.7 Question (iii). Probability filters go beyond desirability
of gamble sets.

An encoding of which gamble sets are desirable by Definition 3.4, does not suffice
to tell us everything about the opinion state, as given by a probability filter.
This contrasts to the case of credal sets, where Archimedean mixing coherent
choice functions are expressively equivalent to sets of probability functions [53].
The expressive power of probability filters goes strictly beyond that of sets of
desirable gamble sets.

Theorem 4.13. There are distinct coherent probability filters, F and F ′ which
result in the same sets of desirable gamble sets, i.e., KF = KF ′ .

We couch the proof of this by setting up an example, which bears a close
relationship to FInfBiased used in Examples 2.6 and 3.12, and as was used in the
proof of Lemma 4.15.

Example 4.14. We will describe two filters, FFair and FFairOrInfBiased.
Consider Ω = {H,T}, the outcomes of a coin toss. Define:

FFair := {C ⊆ Prevs | C ⊇ Jpr(H) = 0.5K}

FFairOrInfBiased :=

{
C ⊆ Prevs

∣∣∣∣ there is some ϵ ∈ R with ϵ > 0 and
C ⊇ J0.5 ≤ pr(H) < 0.5 + ϵK

}
.

In a similar way to Example 2.6, one can check that these are coherent. They
are also pointwise regular.

Unlike for FFair, for FFairOrInfBiased it does not seem equally likely that the
coin lands heads as tails. She suspends judgement on whether it is equally likely
or more likely to land heads than tails.

Jpr(H) = 0.5K /∈ FFairOrInfBiased

So FFair and FFairOrInfBiased are distinct.
However, this difference between FFair and FFairOrInfBiased does not affect

any judgements of the (strict) desirability of gambles, or of whether gamble sets
contain a desirable gamble. That is what we show in the next result.

Lemma 4.15. KFFair
= KFFairOrInfBiased

Proof. Recall A ∈ KF iff J∃h∈A : Pr(h)> 0K ∈ F .
Since FFairOrInfBiased ⊆ FFair, also KFFairOrInfBiased

⊆ KFFair
. We need to show

the converse.
Suppose A ∈ KFFair , that is J∃h∈A : Pr(h)> 0K ⊇ Jpr(H) = 0.5K.
Take any P ∗ ∈ Jpr(H) = 0.5K. Since P ∗ ∈ J∃h∈A : Pr(h)> 0K there is a

g∗ ∈ A with P ∗(g∗) > 0. Let δ > 0 such that P ∗(g∗) > δ > 0.
Recall that this example is considering Ω = {H,T}, so that for P ∈ Prevs,

P (g) = P (H)g(H) + P (T)g(T).
If g∗(H) ≥ g∗(T) then for P (H) ≥ 0.5, we have P (g∗) ≥ P ∗(g∗) > 0.

In this case, J∃h∈A : Pr(h)> 0K ⊇ Jpr(H) ≥ 0.5K so J∃h∈A : Pr(h)> 0K ⊇
JPr(g∗)> 0K ∈ FFairOrInfBiased.

If g∗(H) < g∗(T) then put

ϵ :=
δ

g∗(T)− g∗(H)
> 0.
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and observe that if 0.5 ≤ P (H) < 0.5 + ϵ,

P ∗(g∗)− P (g∗) = (P (H)− 0.5)(g∗(T)− g∗(H))

≤ ϵ(g∗(T)− g∗(H)) as g∗(T) > g∗(H)

= δ

And by assumption that P ∗(g∗) > δ, we can conclude that P (g∗) > 0. This shows
then that J∃h∈A : Pr(h)> 0K ⊇ JPr(g∗)> 0K ⊇ J0.5 ≤ (()H) < ϵK, for this
choice of ϵ. This therefore gives us J∃h∈A : Pr(h)> 0K ∈ FFairOrInfBiased.

As in the case of desirability (Section 3.6), one could obtain equivalent
frameworks if we restrict the probability filter framework. In this case, we would
restrict to those which satisfy axiom (FK):

(FK) If C ∈ F then there are some finitely many sets of gambles A1, . . . , An

with J∃h∈Ai : Pr(h)> 0K ∈ F for each Ai and

C ⊇ J∃h∈A1 : Pr(h)> 0K ∩ . . . ∩ J∃h∈An : Pr(h)> 0K.

This axiom ensures that F is determined by its treatment of the probability
constraints of the form J∃h∈A : Pr(h)> 0K.

A restriction essentially equivalent to this is adopted in de Cooman et al.
[16, p.12], although they implement it by restricting the kinds of probability
constraints considered. See Section 2.4 for more general discussion about how to
impose restrictions.

Proposition 4.16. For every coherent mixing K, FK satisfies axiom (FK). Also,
if F is a probability filter satisfying axiom (FK) then F = FKF .

Proof. The argument is exactly as in Proposition 3.19.

We do not propose (FK) as an axiom which should be adopted when capturing
an agent’s belief state, as it rules out important differences of opinion. For
example, it rules out FFair. The credal judgement that the coin is equally
likely to land heads and tails is not something that matters for judgements of
(strict) desirability of any gambles (due to Lemma 4.15; it is only FFairOrInfBiased

which satisfies axiom (FK)). However, I propose that this is an important kind
of opinion that should be captured in the model of belief. Thus, adopting
axiom (FK) is, I propose, too strong, and our representation of uncertainty
should go beyond sets of desirable gamble sets.

4.8 Updating and Conditionalisation

Building on Section 3.7 finally move to showing how our account of updating on
probability filters corresponds to that on choice functions. Again we result in a
tight relationship with one’s judgements on the called-off gambles.

As in Van Camp [60], we define:

Definition 4.17. Let 1EA := {1Eg | g ∈ A},

Proposition 4.18. Suppose F is coherent and pointwise regular. Then A ∈
KF|E iff 1EA ∈ KF .
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This works similarly to the proof of Proposition 3.23.

Proof. We need to show that J∃h∈A : Pr(h)> 0K ∈ F|E iff J∃h∈1EA : Pr(h)> 0K ∈
F .

From the definition of F|E, we have that J∃h∈A : Pr(h)> 0K ∈ F|E iff there
is some C ∈ F with J∃h∈A : Pr(h)> 0K ⊇ {P (· | E) | P ∈ C and P (1E) > 0}.
That is, for every P ∈ C with P (1E) > 0, there is some h ∈ A with P (h|E) > 0.
By Proposition 3.21 this is iff P (1Eh) > 0. We need to show that there is some
such C iff J∃h∈1EA : Pr(h)> 0K ∈ F .

If J∃h∈1EA : Pr(h)> 0K ∈ F , then this is such a C.
Conversely, if we have such a C then since we also have JPr(1E)> 0K ∈ F by

pointwise regularity, we have C ∩ JPr(1E)> 0K ∈ F . If P is in this intersection
then P (1Eh) > 0 for some h ∈ A, and so P ∈ J∃h∈1EA : Pr(h)> 0K. By
axiom (F⊇), then J∃h∈1EA : Pr(h)> 0K ∈ F .

5 Conclusion

We have proposed representing an agent’s uncertain belief state by a collection
of credal judgements which are closed and consistent under finitary probabilistic
entailment. More formally, they are represented with a collection of probability
constraints, or constraints on linear previsions, which form the mathematical
structure of a filter, that is, which are closed under finitary intersection and
supersets, matching that of probabilistic entailment, and which don’t contain
∅, ensuring that when we take such a finitary probabilistic closure, they don’t
result in inconsistencies.

The model is closely related to the credal set model of belief, with special
kinds of filters, namely principal filters, being equivalent to the credal set model.
By allowing also for non-principal filters as coherent we are instead just closing
an agent’s credal judgements under finitary probabilistic entailment. We have
shown that this allows the account to accommodate a version of regularity and
to encompasses the model of sets of desirable gambles. This allows it to avoid
the objections by Walley [68] to the credal set model of belief.

We also showed a close connection between probabilistic entailment and
coherence of sets of desirable gambles. We identified the axioms on sets of
desirable gambles which matches that of finitary probabilistic entailment, under-
standing a judgement that a gamble is desirable to be satisfied by the probability
functions evaluating it to have positive expected value (Section 3.5). We showed
that, at least when we also include pointwise regularity, the assumption that
gambles which might lead to a gain and cannot lead to a loss are judged as
having positive expected payout, this results exactly in the usual axioms for
coherence of a set of desirable gambles (Theorems 3.7 and 3.10). When we
are interested in choice functions, the association becomes more fraught. We
have identified the axioms that correspond to finitary probabilistic entailment
amongst judgements of the form J∃h∈A : Pr(h)> 0K (Theorem 4.12); and when
pointwise regularity is added these are axioms of mixing (finitely) coherent choice
functions (Theorems 4.6 and 4.8).
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Noûs, 51(4):667–685, 2017.

[52] Teddy Seidenfeld, Mark J Schervish, and Joseph B Kadane. Decisions
without ordering. Acting and Reflecting: The Interdisciplinary Turn in
Philosophy, pages 143–170, 1990.

[53] Teddy Seidenfeld, Mark J Schervish, and Joseph B Kadane. Coherent choice
functions under uncertainty. Synthese, 172(1):157–176, 2010.

[54] Teddy Seidenfeld, Mark J Schervish, and Joseph B. Kadane. Forecasting with
imprecise probabilities. International Journal of Approximate Reasoning,
53(8):1248–1261, 2012.

[55] Amartya Sen. Social choice theory: A re-examination. Econometrica:
journal of the Econometric Society, pages 53–89, 1977.

[56] Abner Shimony. Coherence and the axioms of confirmation1. The Journal
of Symbolic Logic, 20(1):1–28, 1955.

[57] Brian Skyrms. Causal necessity. Philosophy of Science, 48(2):329–335, 1981.
doi: 10.1086/289003.

[58] Brian Skyrms. Strict coherence, sigma coherence and the metaphysics of
quantity. Philosophical Studies: An International Journal for Philosophy in
the Analytic Tradition, 77(1):39–55, 1995.

[59] Matthias CM Troffaes and Gert de Cooman. Lower previsions. John Wiley
& Sons, 2014.

43



[60] Arthur Van Camp. Choice functions as a tool to model uncertainty. PhD
thesis, Ghent University, Faculty of Engineering and Architecture., 2018.

[61] Arthur Van Camp and Enrique Miranda. Irrelevant natural extension for
choice functions. Proceedings of Machine Learning Research, 103:414–423,
2019.

[62] Arthur Van Camp and Teddy Seidenfeld. Exposing some points of in-
terest about non-exposed points of desirability. International Journal of
Approximate Reasoning, 144:129–159, 2022.

[63] Bas C Van Fraassen. Rational belief and probability kinematics. Philosophy
of Science, 47(2):165–187, 1980.

[64] Bas C Van Fraassen. Belief and the will. The Journal of Philosophy, 81(5):
235–256, 1984.

[65] Bas C Van Fraassen. Figures in a probability landscape. In Truth or
consequences: Essays in honor of Nuel Belnap, pages 345–356. Springer,
1990.

[66] Bas C Van Fraassen. Vague expectation value loss. Philosophical Studies,
127:483–491, 2006.

[67] Peter Walley. Statistical Reasoning with Imprecise Probabilities. Chapman
and Hall, New York, 1991.

[68] Peter Walley. Towards a unified theory of imprecise probability. Interna-
tional Journal of Approximate Reasoning, 24(2-3):125–148, 2000.

[69] Peter M Williams. Notes on conditional previsions. International Journal
of Approximate Reasoning, 44(3):366–383, 2007.

A Appendix

A.1 Proof of Theorems 3.13 and 3.15

Proposition A.1. If F is coherent then DF satisfies axioms (D0/∈), (Dλ)
and (D+) and axiom (Dinf>0), (D≥) and (DArchCl).

Proof. The proof that it satisfies axioms (D0/∈), (Dλ) and (D+) is exactly as in
Theorem 3.7, which do not make use of pointwise regularity.

Axiom (Dinf>0): If inf(g) > 0 then for every Pr ∈ Prevs, Pr(g) ≥ inf(g) > 0.
So JPr(g)> 0K = Prevs ∈ F and thus g ∈ DF .

Axiom (D≥): Suppose g ∈ DF and f ≥ g. Then JPr(g)> 0K ∈ F . But
every Pr ∈ Prevs, Pr(f) ≥ Pr(g), and thus JPr(f)> 0K ⊇ JPr(g)> 0K, so by
axiom (F⊇), JPr(f)> 0K ∈ F , so f ∈ DF .

Axiom (DArchCl): Suppose a ∈ D and b ∈ posi({a− ϵ}) + G≥0 for all ϵ > 0.
Consider some Pr ∈ Prevs such that Pr(a) > 0. Take ϵ > 0 such that Pr(a) > ϵ.
b ∈ posi({a− ϵ}) +G≥0 so there is λ > 0 and h ∈ G≥0 such that b = λ(a− ϵ) + h.
So using the properties of linear previsions, Pr(b) = λ(Pr(a)− ϵ) + Pr(h) with
Pr(h) ≥ 0 and Pr(a) > ϵ, so Pr(b) > 0, as required.

This proves Theorems 3.13 and 3.15.

A.2 Proof of Theorem 3.14

Sublemmas 3.10.1 and 3.10.3 still hold and will be used. We need to find
appropriate modifications of Sublemmas 3.10.2 and 3.10.4
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Sublemma A.1.1. Suppose D satisfies axioms (D0/∈), (Dλ) and (D≥). If
D ∩ Sb ̸= ∅, then b ∈ D.

Proof. Suppose f ∈ D ∩ Sb.
f /∈ G≤0: If f ∈ G≤0 then 0 ≥ f so by axiom (D≥), 0 ∈ D, contradicting

axiom (D0/∈).
Thus in fact b ∈ posi({f}) + G≥0 by Sublemma 3.10.1. So b = λf + h with

h ∈ G≥0 and λ > 0. By axiom (Dλ), λf ∈ D. Then by axiom (D≥), b ∈ D.

Sublemma A.1.2. If Ω is finite, then Sb is closed.

Proof. When Ω is finite, say Ω = {ω1, . . . , ωn}, then G≥0 = cone({1ω1 , . . . ,1ωn}).
And thus

Sb = cone({b})− G≥0

= cone({b})− cone({1ω1 , . . . ,1ωn})
= cone({b}) + cone({−1ω1 , . . . ,−1ωn})
= cone({b,−1ω1 , . . . ,−1ωn})

When Ω is finite, then, Sb is thus a finitely-generated cone, and is therefore
closed.

We can now prove Theorem 3.14.

Proof of Theorem 3.14. The proof follows that of Theorem 3.10. Clearly D ⊆
DFD .

If b ∈ DFD then there are a1, . . . , an ∈ D with JPr(b)> 0K ⊇ JPr(a1)> 0K ∩
. . .∩ JPr(an)> 0K. By Sublemma 3.10.3, this entails that conv({a1, . . . , an}) and
closure(Sb) are non-disjoint. By Sublemma A.1.2, Sb is closed, ensuring that in
fact conv({a1, . . . , an}) and Sb are non-disjoint. Then since a1, . . . , an ∈ D, by
axioms (Dλ) and (D+), D ∩ Sb ̸= ∅, so by Sublemma A.1.1, b ∈ D, as required.

To show that FD is coherent: It is closed under finite intersection and
supersets by definition. By axiom (Dinf>0), D ≠ ∅, so FD ≠ ∅. To check that it
is proper, observe that ∅ = JPr(0)> 0K /∈ FD, making use of axiom (D0/∈).

A.3 Proof of Theorem 3.17

In this case we cannot prove that Sb is closed. Instead we make use of ax-
iom (DArchCl) to move directly from non-disjointness with closure(Sb) to that
b ∈ D. We first need a few subsidiary lemmas.

Sublemma A.1.3. Suppose D satisfies axioms (D0/∈), (Dλ) and (DArchCl). If
D ∩ closure(Sb) ̸= ∅, then b ∈ D.

Proof. As in Sublemma 3.10.2, Sb = (posi({b})− G≥0) ∪ G≤0. So closure(Sb) =
closure(posi({b})− G≥0) ∪ G≤0.

Our axioms entail that D ∩ G≤0 = ∅. Otherwise, suppose f ∈ D ∩ G≤0. So
f ≤ 0. By axiom (D≥), then 0 ∈ D contradicting axiom (D0/∈).

Thus in fact D∩ closure(posi({b})−G≥0) ̸= ∅. Call a member of it f∗. Thus,
for each ϵ > 0 there is sϵ ∈ posi({b})− G≥0 with ∥sϵ − f∗∥∞ < ϵ.

Observe then that sϵ(ω)− f∗(ω) ≥ −ϵ for all ω ∈ Ω, so sϵ − f∗ + ϵ ∈ G≥0.
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We have that sϵ ∈ posi({b})−G≥0 so put sϵ = λb+h with λ > 0 and h ∈ G≥0.
Then

b = 1/λsϵ + h

= 1/λ(f∗ − ϵ) + 1/λ(sϵ − f∗ + ϵ) + h

with 1/λ(sϵ − f∗ + ϵ) + h ∈ G≥0, so b ∈ posi({f∗ − ϵ}) + G≥0 for all ϵ > 0. Since
f∗ ∈ D, by axiom (DArchCl), we can conclude that b ∈ D.

We can now prove the main result.

Proof of Theorem 3.17. The proof follows that of Theorem 3.10. Assume D
satisfies axioms (D0/∈), (Dλ), (D+) (Dinf>0), (D≥) and (DArchCl), Clearly D ⊆
DFD .

If b ∈ DFD then there are a1, . . . , an ∈ D with JPr(b)> 0K ⊇ JPr(a1)> 0K ∩
. . . ∩ JPr(an)> 0K. By Sublemma 3.10.3, this entails that conv({a1, . . . , an})
and closure(Sb) are non-disjoint. Let f ∈ conv({a1, . . . , an}) ∩ closure(Sb). By
axioms (Dλ) and (D+) then f ∈ D, so D ∩ closure(Sb) ̸= ∅, entailing that b ∈ D
by Sublemma A.1.3.

The proof that FD is coherent is as in the case when Ω is finite.

A.4 Proof of claims in Example 3.16

Proof. For any λ > 0, when n > 1/λ then 1/n2 < λ1/n, i.e., b(n) < λa(n). Thus
for no λ > 0 do we have b ≥ λa, as this would require that b(n) ≥ λa(n) for all
n. So b /∈ posi({a}) + G≥0.

An analogous argument shows that a /∈ Sb = cone({b})−G≥0. For any µ ≥ 0
and n > µ, then a(n) > µb(n), so for no µ ≥ 0 do we have a ≤ µb, ensuring that
a /∈ Sb.

We will show that b ∈ posi({a− ϵ}) + G≥0 for all ϵ > 0. Consider some ϵ > 0.
We will find some λϵ > 0 such that b(n) ≥ λϵ(a(n)− ϵ) for all n.

For n ≥ 1/ϵ, a(n)− ϵ = 1/n − ϵ ≤ 0, so b(n) ≥ 0 ≥ λ(a(n)− ϵ) for any λ > 0.
Also for n = 0, a(0)− ϵ < 0, so b(0) = 0 ≥ a(0)− ϵ.

For 0 < n < 1/ϵ, 1/n − ϵ > 0. So consider λϵ := min{ 1/n2

1/n−ϵ | n < 1/ϵ} > 0,

since this is a finite set of positive reals. For any n < 1/ϵ, λϵ ≤ 1/n2

1/n−ϵ so
1/n2 ≥ λϵ(1/n − ϵ), i.e., b(n) ≥ λϵ(a(n)− ϵ) for n < 1/ϵ.

We thus have b(n) ≥ λϵ(a(n) − ϵ) for all n, i.e., b ≥ λϵ(a − ϵ); giving us
b ∈ posi({a−ϵ})+G≥0. This also shows us that a−ϵ ∈ Sb = cone({b})−G≥0.
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