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Accuracy representation results and estimates

Catrin Campbell-Moore∗

December 2, 2024

This document goes through some standard results about strictly proper mea-
sures of accuracy and representation theorems (Schervish and Savage/Bregman).
It also presents the slightly less well studied case of measuring the accuracy of
estimates of random variables.

The spirit of the document is to include proofs, but to make things simple
in order to make the central ideas of the proofs across, often at the cost of
generality. A number of restrictive assumptions are made throughout.

Full analysis of what restrictions can be dropped in the estimates case requires
further work.
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Part I

Accuracy of a credence
How accurate is a credence value in a proposition, say 0.6, when the proposition
is true? We give a measure.

I am not here considering the accuracy of an entire credence function at a
world, but just of a single proposition.

1 Definitions

Setup 1.1. We give an accuracy measure to describe how accurate a credence is
in a proposition when it is true/false. Formally, we have two accuracy measures,

a1 : [0, 1]→ Re (1)

a0 : [0, 1]→ Re (2)

4

Remark (Infinite accuracy). One can often allow infinite values at end-points.
In particular, one can allow infinite inaccuracy at the maximally far-away points
(this assumes that credences can only take values in [0, 1], if credences can take
values in Re, then we cannot have infinite values and keep truth-directendess
— we can always get worse.) See discussion about infinity, and various other
assumptions and their relationships in Schervish et al. (2009). 4

Definition 1.2. a is (strictly) proper iff for any p ∈ [0, 1],

Exppa(x) := pa1(x) + (1− p)a0(x) (3)

obtains a (unique) maximum at x = p. 4

Definition 1.3. a is (strictly) truth-directed iff If v < x < y or y < x < v then
av(x) > av(y) 4
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Proposition 1.4. (Strict) propriety entails (strict) truth-directedness.

This is Schervish (1989, Lemma A1). I include a proof in appendix A. I
leave this outside the main body of the paper because truth directedness is
incredibly plausible, and certainly more plausible than propriety as a constraint
on measurements of accuracy. (Note that this is different when one is interested
in elicitation directly rather than, as philosophers usually are, measurements of
the epistemic value of credences.)

Remark. Sometimes it would be nicer to think directly about a loss function,
sv, with

sv(x) = av(v)− av(x) (4)

sv(x) measures the difference between the accuracy of perfection and the
accuracy of the given credence. Note that this picture requires sv(v) = 0.

This is sometimes called a “scoring rule”, although that terminology is also
simply used for inaccuracy, i.e., negative accuracy.

By giving a strictly proper measure sv, one can arbitrarily choose values for
self-accuracy av(v) to obtain a strictly proper accuracy measure by

av(x) = av(v)− sv(x) (5)

The representations are actually really directly characterising s. We can talk
about strict propriety etc directly of s. This is actually more commonly done in
the literature.

The literature such as Pettigrew (2016) works with inaccuracy, but I work
with accuracy because it more closely ties with the philosophical presentation of
trying to maximise the good of having accurate credences. Say something about
inaccuracy vs scoring rules vs loss functions... 4

We present two representation results for accuracy measures.

2 Schervish

2.1 Schervish form

The central result Schervish (1989, Theorem 4.2)

Theorem 2.1. a is (strictly) proper iff there is some measure λ (and values
av(v)) such that for every x ∈ [0, 1],

a0(x) = a0(0)−
∫ x

0

t λ(dt) (6)

a1(x) = a1(1)−
∫ 1

x

1− x λ(dx) (7)

(for strictness, it should assign positive value to each interval)

3
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Setup 2.2. When a > b define the integral∫ b

a

f(x) dx = −
∫ a

b

f(x) dx

(i.e., if it’s “wrong-way-around” integration limits, just take negative).
Note then we can re-describe the Schervish form as:

av(x) = av(v)−
∫ v

x

v − t λ(dt). (8)

i.e.,

sv(x) =

∫ v

x

v − t λ(dt). (9)

where sv(x) := av(v)− av(x). (if x < v, the switching limits and absolute value
signs cancel out) 4

Lemma 2.3. A useful fact, then, is

av(x) = av(v)−
∫ v

x

v − t λ(dt). (10)

Remark. If working with inaccuracy, or the scoring rule, the signs are cleanest
writing it as

sv(x) =

∫ x

v

t− v λ(dt). (11)

4

2.2 Any such a is proper

Lemma 2.4. The following are equivalent:

1. Schervish form: for v ∈ {0, 1} and any x ∈ [0, 1],

av(v)− av(x) =

∫ v

x

v − t λ(dt). eq. (10)

2. For all x, y ∈ [0, 1], (i.e., replacing v ∈ {0, 1} by a general y ∈ [0, 1])

av(y)− av(x) =

∫ y

x

v − t λ(dt). (12)

3. For all x, p ∈ [0, 1],

Exppa(p)− Exppa(x) =

∫ p

x

(p− t) λ(dt) (13)

Proof Sketch. These follow from quite simple manipulations. To obtain item 1,
or item 2 from item 3, note that Expva(x) = av(x). A full proof is included in
appendix B.

4
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Proposition 2.5. If a has Schervish form it is (strictly) proper.

Proof. Suppose x < p. Then for any t ∈ [x, p], p− t > 0, so
∫ p

x
(p− t)λ(dt) > 0.

Suppose x > p. Then for any t ∈ [x, p], p − t < 0, so
∫ x

p
(p − t)λ(dt) < 0.

But, Exppa(p)− Exppa(x) switches the integral bounds, i.e., involves
∫ p

x
, which

is then positive by specification of wrong-way-around integrals.

2.3 Schervish’s representation result

We prove it simply for the absolutely continuous case in order to keep the proof
easy to follow. The general result holds (Schervish, 1989, Theorem 4.2)

Proposition 2.6. If a is strictly proper and absolutely continuous, then there
is a positive function m with

av(x) = av(v)−
∫ v

x

(v − t)m(t) dt (14)

Proof. For absolutely continuous a, by the fundamental theorem of calculus

av(v)− av(x) =

∫ v

x

a′v(t) dt (15)

By propriety, Expta(s) has a maximum at s = t, so the derivative at this
point is 0.

ta′1(t) + (1− t)a′0(t) = 0 (16)

By manipulating eq. (16)

a′0(t)

−t
=

a′1(t)

1− t
(17)

Define the function m by m(t) = a′0(t)/−t. So a′0(t) = −tm(t) and a′1(t) =
(1− t)m(t). So, by replacing these in eq. (15), we obtain eq. (14).

By proposition 1.4, a is strictly truth-directed, so a′0(t) < 0 and a′1(t) > 0.
Thus, m is positive.

Remark. When it is not absolutely continuous we can obtain a representation
of the form:

av(x) = av(v)−
∫ v

x

(v − t) dλ(t) (18)

we just can’t push the measure λ into a mass function. The proof of this is
(Schervish, 1989, Theorem 4.2) and instead takes the Radon Nikodym derivatives
of a0 and a1 relative to a1 − a0.

Schervish also shows that the finiteness assumptions can be relaxed, 4
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3 Bregman divergences

3.1 Entropy and Bregman Divergence

Definition 3.1. Define the entropy of a as:

ϕa(p) := Exppa(p) = pa1(p) + (1− p)a0(p) (19)

4

Proposition 3.2. If a is proper, then ϕa is convex and if it is differentiable,
then:

Exppa(p)− Exppa(x) = ϕa(p)− ϕa(x)− (p− x)ϕ′a(x) (20)

If it is not differentiable, then we have the same form, but with ϕ′a as some
sub-gradient.

Also for v ∈ {0, 1},

av(x) = av(v)− (ϕa(v)− ϕa(x)− (v − x)ϕ′a(x)) (21)

And in fact

av(x) = ϕa(x) + (v − x)ϕ′a(x) (22)

=
Exppalp

)

€1
Ex pace, • I.

ce (x)t (p-x) ee 'Gc)

Figure 1: Divergence diagram

Proof. By strict propriety, Exppa(x) < Exppa(p) = ϕa(p). And

Exppa(x) = pa1(x) + (1− p)a0(x) (23)

6
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is a linear function of p (we could name it, e.g., fx(p) = Exppa(x)). So we have
a linear function entirely lying below ϕa and touching it just at p. Therefore, ϕa

is convex, with fx(p) = Exppa(x) a subtangent of it at x.
If ϕa is differentiable at x, then the subtangent at x, which is equal to

Expxa(p), is given by:

Exppa(x) = ϕa(x) + (p− x)ϕ′a(x) (24)

and eq. (20). If ϕa is not differentiable, then one can take the slope of Exppa(x)
and observe it is a sub-gradient of ϕa by propriety; that will play the role of ϕ′a.

Equation (25) follows immediately, putting p ∈ {0, 1} and observing that
Expva(v) = av(v) to get

av(v)− av(x) = (ϕa(v)− ϕa(x)− (v − x)ϕ′a(x)) (25)

and then rearranging

Definition 3.3. A Bregman divergence associated with a convex function ϕ is:

d(p, x) := ϕ(p)− ϕ(x)− (p− x)ϕ′(x) (26)

4

So this tells us that Exppa(p)− Exppa(x) is a Bregman divergence.

Corollary 3.4. If a is strictly proper, then

av(x) = ϕa(x) + (v − x)ϕ′a(x) (27)

where ϕa the entropy for a, i.e., as in eq. (19).

Proof. av(x) = Expva(x). And from eq. (20), using the fact that ϕ(v) =
Expva(v)

Expva(x) = ϕ(x) + (v − x)ϕ′(x) (28)

Remark. There is an alternative proof that goes directly via rearrangments of
eq. (16) using the definition of entropy, but that proof doesn’t directly show that
it is convex. 4

We also have the converse,

Proposition 3.5. a is strictly proper iff there is a convex function ϕ (with
values av(v)) where:

av(x) := av(v)− (ϕ(v)− ϕ(x)− (v − x)ϕ′(x)) (29)

That is, the error-score is:

sv(x) = ϕ(v)− ϕ(x)− (v − x)ϕ′(x) (30)

7
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4 Relationships between Bregman divergences
and the Schervish form

Lemma 4.1. For any twice-differentiable ϕ,∫ p

x

(p− t)ϕ′′(t)dt = ϕ(p)− ϕ(x)− (p− x)ϕ′(x) (31)

Proof. Integration by parts tells us that
∫ p

x
u(t)v′(t) dt = [u(p)v(p)− u(x)v(x)]−∫ p

x
v(t)u′(t) dt. We apply this with u(t) := (p− t), and v(t) := ϕ′(t), observing

that u′ = −1. So:∫ p

x

(p− t)ϕ′′(t) dt (32)

= [(p− p)ϕ′(p)− (p− x)ϕ′(x)]−
∫ p

x

ϕ′(t)× (−1) dt Integration by parts

(33)

=

∫ p

x

ϕ′(t) dt− (p− x)ϕ′(x) (34)

= ϕ(p)− ϕ(x)− (p− x)ϕ′(x) (35)

We can also do this with a measure rather than the mass function when λ is
a measure associated with the distribution function ϕ′.

Lemma 4.2. For an accuracy measure, the m from Schervish and ϕ the entropy,
we have: m(t) = ϕ′′(t).

Proof.

ϕ′(x) = a1(x)− a0(x) + xa′1(x) + (1− x)a′0(x) product rule (36)

= a1(x)− a0(x) eq. (16) (37)

And from eq. (16),

a′1(x)− a′0(x) =
a′0(x)

−x
= m(x). (38)

So ϕ′′(x) = m(x).

Part II

Estimates

5 Accuracy of Estimates

add more discussion

8
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We want to consider not only credences, which are truth-value estimates, or
evaluated as good or bad with their “closeness to the truth-value of 0/1”, but
also the accuracy of one’s general estimates, or forecasts, for random variables
more generally.

The random variable might, for example, be representing the utility of taking
some action; or it might be the number of millimetres of rain next week. The
agent will provide an estimated value. Lets say that she estimates the value to
be 10, and its true value turns out to be 30. How accurate was her estimate?
This is specified by an accuracy measure. av : Re→ Re with av(x) describing
the accuracy of providing an estimated value of x for V when the true value is v.
Observe that, like in the earlier setting, we are assuming that accuracy measures
are finite.

Setup 5.1. We assume that Ω is finite.
A random variable is a function V : Ω→ Re.
A probability function is p : Ω→ [0, 1] with

∑
w∈Ω p(w) = 1. (That is, we’re

presenting it as a probability mass function; fine since Ω is finite). 4

Definition 5.2 (Expected accuracy). For p probabilistic,

Expp[aV (·)(x)] :=
∑
w∈Ω

p(ω)aV (ω)(x) (39)

Expp[V ] :=
∑
w∈Ω

p(ω)V (ω) (40)

4

Definition 5.3 (Propriety). a is (strictly) proper for V iff for any probability p,
Expp[aV (·)(x)] is (uniquely) maximised at x = Expp[V ]. 4

6 Schervish form for estimates

Schervish’s representation very naturally extends to consider accuracy of a value
as an estimate of any random variable. This is provided in Schervish et al. (2014,
eq 1), inspired by Savage (1971, eq 4.3). It just applies the same integral form
as in eq. (10) but allows the limits to be the true values of the variable, which
may not be 0 or 1.1

ak(x) = ak(k)−
∫ k

x

(k − t) λ(dt) (41)

Schervish et al. (2014, Lemma 1) show that all a that have this form are
strictly proper. They require that λ is finite on every bounded interval and is
mutually absolutely continuous wrt the Lebesgue measure.2 They do not assume

1It was Jason Konek who suggested this form to me and asked whether the Schervish
representation result extends to this setting.

2their proof of proposition 6.1 only requires the one direction, that the Lebesgue measure is
absolutely continuous wrt λ.

9
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that Ω is finite; instead they define (strict) propriety by restricting to p where
Expp[V ] is finite and Expp[aV (x)] is finite for some x.

Proposition 6.1 (Schervish et al. (2014, Lemma 1)). Suppose a has the form:

ak(x) = ak(k)−
∫ k

x

(k − t) λ(dt) (42)

where λ is finite on every bounded interval; then a is proper. If λ gives positive
measure to every non-generate interval, then a is strictly proper.

We give the proof in the more restrictive setting where Ω is finite, i.e., there
are only finitely many possible values that V can take, and λ is finite on every
bounded interval. check what I actually use in the writing of it!

Proof. Suppose a is of form eq. (42). First observe that for any k, x and y,

ak(y)− ak(x) =

∫ y

x

k − t λ(dt) (43)

as in the proof of 1 =⇒ 2 in appendix B.
Let p be probabilistic. Let e = Expp[V ].

Expp[a(e)]− Expp[a(x)] (44)

=
∑
w

p(w)× (aV (w)(e)− aV (w)(x)) (45)

=
∑
w

p(w)×
(∫ e

x

V (w)− t λ(dt)

)
(46)

=

∫ e

x

(∑
w

p(w)× (V (w)− t)

)
λ(dt) (47)

=

∫ e

x

(e− t) λ(dt) (48)

If x < e, then e− t > 0 for all t ∈ [x, e], and thus this integral is positive.
If x > e, then e− t < 0 for all t ∈ [e, x], so∫ x

e

(e− t) λ(dt) < 0;

and thus eq. (48)> 0 because the integral limits are switched, as in setup 2.2
Thus, for any x 6= e, Expp[a(e)]− Expp[a(x)] =

∫ e

x
(e− t) λ(dt) > 0. So we

know that Expp[a(x))] is maximised at x = e, as required.

We will show the converse: that any strictly proper a has this form, at least
given some restrictive assumptions.

We first will make use of a lemma
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Definition 6.2. a is (strictly) value-directed iff If k < x < y or y < x < k then
ak(x) > ak(y) 4

Proposition 6.3. (Strict) propriety entails (strict) value-directedness.

Again we relegate the proof to the appendix because we find its fiddlyness
outweighs its philosophical interest, as, for accuracy measures, value directedness
can be directly motivated.

Setup 6.4. Let vmin and vmax be min(range(V )) and max(range(V )), observing
that V reaches its minimum and maximum by the assumption that Ω is finite,
so it takes only finitely many possible values. 4

Theorem 6.5. Assume ak is absolutely continuous for each k.
If a is (strictly) proper for r.v. V , then there is a (strictly) positive function

m such that for every k ∈ range(V ) and x ∈ [vmin, vmax]

ak(x) = ak(k)−
∫ k

x

(k − t)m(t) dt (49)

Moreover,

m(t) =
a′k(t)

k − t
for all k ∈ range(V ).

The proof is a mild extension of the proof of proposition 2.6.

Proof. For k ∈ range(V ), define mk : [vmin, vmax]→ Re by:

mk(t) :=
a′k(t)

k − t
. (50)

Observe that mk is (strictly) positive by (strict) value-directedness.
For absolutely continuous a, by the fundamental theorem of calculus

ak(k)− ak(x) =

∫ k

x

a′k(t) dt (51)

Thus we immediately get (recalling the definition of mk):

ak(x) = ak(k)−
∫ k

x

(k − t)mk(t) dt (52)

The important part is that mk does not in fact depend on the choice of k.
That is, we need to show that mk = mr for k, r ∈ range(V ). For this, we use
the strict propriety.

We first show it for certain t:

Sublemma 6.5.1. For t ∈ ConvHull({k, r}), we have mk(t) = mr(t)

11
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Proof. Wlog suppose k < r. Let ωk ∈ Ω s.t. V (ωk) = k and ωr ∈ Ω s.t. V (ωr) =
r. Since we have assumed t ∈ ConvHull({k, r}), we con consider p∗ with

p∗(ω) =


t−k
r−k ω = ωk

r−t
r−k ω = ωr

0 otherwise

(53)

Observe that p∗ is probabilistic, i.e., these are > 0 and sum to 1.
Now, observe that Expp∗ [V ] = t. So by propriety, the function:

Expp∗a(x) =
t− k
r − k

ar(x) +
r − t
r − k

ak(x) (54)

is maximised at x = t, so its derivative is 0 at t. I.e.:

t− k
r − k

a′r(t) +
r − t
r − k

a′k(t) = 0 (55)

By manipulating eq. (55) we can see that:3

a′r(t)

r − t
=

a′k(t)

k − t
. (60)

I.e., we have shown that mk(t) = mr(t) when t ∈ ConvHull({r, k}).

We still need to show mk′(t) = mr′(t) for any t ∈ [vmin, vmax] and k′, r′ ∈
range(V ). (We use k′ and t′ as we need to use the lemma for other values too).
We assume wlog that k′ 6 r′.

If k′ 6 t 6 r′, then we can immediately apply the lemma to obtain that
mk′(t) = mr′(t).

If t 6 k′ 6 r′, then consider also vmin, and we know that vmin 6 t 6 k′ 6 r′.
So we can apply the lemma now with vmin:

mr′(t) = mvmin(t) Lemma with k = vmin, r = r′ (61)

mk′(t) = mvmin(t) Lemma with k = vmin, r = k′ (62)

Thus, mk′(t) = mr′(t) (63)

Similarly, if k′ 6 r′ 6 t 6 vmax, we can similarly use the lemma to show that
mr′(t) = mmax(t) and mk′(t) = mmax(t), so mk′(t) = mr′(t).

We can thus simply put m(t) := mk(t), independent of choice of k.
3From eq. (55) we get:

(t− k)a′r(t) + (r − t)a′k(t)
r − k

= 0 (56)

(t− k)a′r(t) + (r − t)a′k(t) = 0 (57)

(r − t)a′k(t) = (k − t)a′r(t) (58)

a′r(t)

r − t
=

a′k(t)

k − t
(59)
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Corollary 6.6. For p probabilistic with Expp[V ] = e,

Exppa(e)− Exppa(x) =

∫ e

x

(e− t)m(t) dt (64)

(Schervish, 1989) does not need to assume absolute continuity. We conjecture
that this holds in the estimates setting too. See appendix C.

Corollary 6.7. Suppose each ak is absolutely continuous. Then a has the form
eq. (42) iff a is strictly proper.

Proof. From theorem 6.5 and proposition 6.1

Remark (Assumptions). We are making some quite strong assumptions here.
We list various of the assumptions and their statuses: CHECK!

• Restriction to estimates evaluated being in [vmin, vmax]

– For theorem 6.5, this restriction is essential: Strict propriety doesn’t
give us any control over what ak(x) looks like for x /∈ [vmin, vmax], so
something like the Schervish representation isn’t going to be applicable.
However, if we impose value-directedness in general we can still, for
example, obtain accuracy-dominance results without any further
control over how a looks outside of [vmin, vmax]

• Ω is finite, so that V only takes finitely many values.

– This should probably be removable. Need to do integrals rather than
sums.

– In the writing of the proof of theorem 6.5, we have used the fact that
V obtains its maximum and minimum values; but this is inessential.
Replace the range of estimates that we have control over the form of
(for theorem 6.5) to be ConvHull(range(V )). Rewrite the end part of
that proof to just pick some vmin 6 t 6 k, r or vmax > t > k, r.

– It does get more delicate though because we now need to talk about
whether p must be merely finitely additive, or countably additive, etc.

• Accuracy values are finite

– Schervish (1989) also applies allowing some infinities, so we conjecture
that the same would apply here too. We need to avoid having both
+∞ and −∞ allowed, as this causes expectations to be undefined
(Schervish et al., 2009). Probably it’s fine to allow −∞ so long as it
only appears at endpoints, i.e., ak(x) = −∞ =⇒ x ∈ {vmin, vmax};
which we’d get by value-directedness anyway if we were to directly
assume it, which I think as accuracy measures go we’d be happy to
do so. Recall the status of this stuff... doesn’t it follow from strict
propriety that it’s only infty at endpoingts?
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– Interestingly, though, if we want to use the same accuracy measure
for all possible random variables, we will consider ak(x) for all x ∈ Re,
so this must be finite, as no such real-valued x is an end-point for all
possible variables. So the restriction can be motivated.

– Consider Schervish et al. (2014, example 1) showing a case where it’s
important that we assume the measure to be finite on any bounded
interval, equivalent [check] to the accuracy measure only being infinity
at endpoints.

• One dimensionality! We’re just looking at scoring a single real-valued
variable at a time. It’s all one-dimensional!

– We can push it up to finitely-many multiple variables simultaneously
by just using additivity. But really it would now be natural to do
this with infinitely many variables. So we’re in accuracy-for-infinitely-
many-propositions territory! This is exactly the sort of thing that
Schervish et al. (2014) are considering. See also Kelley and Walsh for
accuracy measures for infinitely many propositions.

• For theorem 6.5 we assume that a is absolutely continuous.

– I conjecture that the absolute continuity is not required for theorem 6.5,
just as it is not in fact required for proposition 2.6 in Schervish (1989,
Theorem 4.2); of course we won’t be able to push it to Schervish form
with a mass function, but will need to stay in the measure setting and
use Radon-Nikodyn derivatives. See appendix C for an attempted
proof.

– The simple continuity part is also probably inessential, as it is for
Schervish (1989, Theorem 4.2) because everything is anyway one-sided
continuous by value-directedness. However, as Schervish et al. (2009)
point out, continuity is essential for dominance results!

For proposition 6.1, Schervish et al. (2014) use an assumption that λ is
absolutely continuous wrt the Lebesgue measure.

4

7 Bregman results

There is a difficulty facing the Bregman strategy which is that there is now no
unique definition of entropy.4

However, we can still get the representation by going via the Schervish
representation result.

4For a variable V which takes values 0, 0.5, 1, consider p1[V = 1] = 0.5, p1[V = .5] = 0,
p1[V = 0] = 0.5, or p2[V = 1] = 0, p2[V = .5] = 0.5, p2[V = 0] = 0. Expp1 [V ] = Expp2 [V ] =
0.5. But it may be that Expp1a(0.5) 6= Expp2a(0.5).
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Proposition 7.1. Assume:

• a is continuously differentiable. What weakenings would work? Need its
derivative to be integrable.

• a is absolutely continuous. NB this follows from cts diff, but perhaps not
from the relevant weakenings.

a is strictly proper iff there is a strictly convex function ϕ (and values av(v))
where:

av(x) = av(v)− [ϕ(v)− ϕ(x)− (v − x)ϕ′(x)] (65)

That is, the error-score is:

sv(x) = ϕ(v)− ϕ(x)− (v − x)ϕ′(x) (66)

Proof. We show the =⇒ direction: Assume a is strictly proper.
Since a is abs cts, by theorem 6.5, we have some positive m with

av(v)− av(x) =

∫ v

x

(v − t)m(t) dt (67)

By the assumption that a is continuously differentiable, we know that m is
continuous, so we can find ϕ where ϕ′′ = m. [Weakenings?]

ϕ is (strictly) convex since its second derivative, m, is (strictly) positive.
Then, using lemma 4.1, i.e., just by integration by parts, we know that∫ v

x

(v − t)m(t)dt = ϕ(v)− ϕ(x)− (v − x)ϕ′(x) (68)

Equation (69) follows immediately from eq. (68) and eq. (67).

The expectation form is also equivalent:

Corollary 7.2. Also iff

Exppa(e)− Exppa(x) = ϕ(p)− ϕ(x)− (p− x)ϕ′(x) (69)

where e := Expp[V ].

Proof.

Exppa(e)− Exppa(x) =
∑
v

p[V = v] (av(e)− av(x)) (70)

=
∑
v

p[V = v]ϕ(v)− ϕ(x)− (v − x)ϕ′(x) (71)

Remark. For any individual pair k and r, we can choose some ϕ where ϕ(k) =
ϕ(r) = 0 or where ϕ(k) = ak(k) and ϕ(r) = ar(r); but we cannot generally
choose a single ϕ with ϕ(v) = 0 for all ϕ. (Since ϕ must be convex, there can
only be two values where ϕ(v) = 0!). 4

Question: how close is it to Savage (1971)?
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Part III

Appendix

A Propriety entails truth/value directedness

A.1 Truth directedness

Proof of proposition 1.4. Take 0 6 z < y 6 1. We will show that a1(y) > a1(z)
and a1(y) < a1(z).

By strict propriety,

Expya(y) > Expya(z) (72)

So, Expy[a(y)− a(z)] > 0 (73)

So, y × (a1(y)− a1(z)) + (1− y)× (a0(z)− a0(z)) > 0 (74)

Let

c = a1(y)− a1(z) (75)

d = a0(y)− a0(z) (76)

So from eq. (74)
yc+ (1− y)d > 0 (77)

Similarly, by strict propriety,

Expza(z) > Expza(y) (78)

So, Expz[a(y)− a(z)] < 0 (79)

So, z × (a1(y)− a1(z)) + (1− z)(a0(z)− a0(z)) (80)

zc+ (1− z)d < 0 definition of c, d (81)
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From eqs. (77) and (81)

yc+ (1− y)d > zc+ (1− z)d (82)

So, (y − z)c > (y − z)d (83)

Thus, c > d since y > z (84)

Thus
c = yc+ (1− y)c > yc+ (1− y)d > 0 (85)

using c > d for the first inequality and eq. (77) for the second.
Thus c > 0. I.e., a1(y)− a1(z) > 0, so a1(y) > a1(z).
Similarly, Thus

d = yd+ (1− y)d < yc+ (1− y)d < 0 (86)

using c > d for the first inequality and eq. (81) for the second.
Thus d < 0. I.e., a0(y)− a0(z) > 0, so a0(y) < a0(z).

A.2 Value directedness

Proof of proposition 6.3. Suppose r and k are in the range of possible values
of V (with r 6= k). Consider a, b in between r and k, so in [r, k] or [k, r], and
e ∈ {r, k}.

For x between r and k define px = x−r
k−r . Observe that Exppx

V = x.
By strict propriety, Exppa

i(b) > Exppa
i(a) and Exppb

i(b) < Expbi(a). So
Exppa

(i(b)− i(a)) > Exppb
(i(b)− i(a)). I.e.:

a− r
k − r

(ik(b)− ik(a)) +
k − a
k − r

(ir(b)− ir(a)) (87)

>
b− r
k − r

(ik(b)− ik(a)) +
k − b
k − r

(ir(b)− ir(a)) (88)

So

a− b
k − r

(ik(b)− ik(a)) >
a− b
k − r

(ir(b)− ir(a)) (89)

Suppose a > b > e. Then:

1

k − r
(ik(b)− ik(a)) >

1

k − r
(ir(b)− ir(a)) (90)

Thus

i(b, e)− i(a, e) (91)

= Exppe
i(b)− Exppe

i(a) (92)

=
e− r
k − r

(ik(b)− ik(a)) +
k − e
k − r

(ir(b)− ir(a)) (93)

<
b− r
k − r

(ik(b)− ik(a)) +
k − b
k − r

(ir(b)− ir(a)) (94)

< 0 (95)
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With eq. (93) to eq. (94) being because e < b and there is less weight on
something positive and more on something negative.

Similarly, if a < b < e. Then

1

k − r
(ik(b)− ik(a)) >

1

k − r
(ir(b)− ir(a)) (96)

So the step from eq. (93) to eq. (94) nonetheless holds with signs reversed. This
shows value directedness whenever a, b, e are between r and k

By choosing appropriate r, we thus show that whenever b moves directly
towards k, accuracy improves.

B Schervish equivalences

Proof of lemma 2.4. • 1 =⇒ 2:

av(y)− av(x) =

(
av(v)−

∫ v

y

v − t λ(dt)

)
−
(
av(v)−

∫ v

x

v − t λ(dt)

)
(97)

=

(∫ v

x

v − t λ(dt)

)
−
(∫ v

y

v − t λ(dt)

)
(98)

=

∫ y

x

v − t λ(dt) (99)

• 2 =⇒ 3:

Exppa(p)− Exppa(x) (100)

= p× (a1(p)− a1(x)) + (1− p)× (a0(p)− a0(x)) (101)

= p×
(∫ p

x

1− t λ(dt)

)
+ (1− p)×

(∫ p

x

0− t λ(dt)

)
by item 2

(102)

=

∫ p

x

(p× (1− t) + (1− p)× (0− t)) λ(dt) (103)

=

∫ p

x

(p− t) λ(dt) (104)

• 3 =⇒ 1: put p as either 0 or 1, i.e., v, and simply observe that:

Expva(v) = av(v) and Expva(x) = av(x) (105)

It then follows immediately from rearranging.
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