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Abstract
We propose a model of uncertain belief. This mod-

els coherent beliefs by a filter, F , on the set of prob-
abilities. That is, it is given by a collection of sets
of probabilities which are closed under supersets and
finite intersections. This can naturally capture your
probabilistic judgements. When you think that it is
more likely to be sunny than rainy, we have {p |
p(SUNNY)> p(RAINY)} ∈ F. When you think that a
gamble g is desirable, we have {p |Expp[g]> 0} ∈ F.
It naturally extends the model of credal sets; and we
will show it captures all the expressive power of the de-
sirable gambles model. It also captures the expressive
power of sets of desirable gamble sets (with a mixing
axiom, but no Archimadean axiom).

1. Introduction
We propose a new model of belief based on probabilities
which is very expressively powerful. This models coherent
beliefs by a filter, F , on the set of probabilities. That is, it
is given by a collection of sets of probabilities which are
closed under supersets and finite intersections.

We can use this to directly capture your opinions. To
capture your comparative judgement that it is more likely
to be sunny than rainy, we have

{p | p(SUNNY)> p(RAINY)} ∈ F.

We can also capture judgements regarding gambles by
considering probabilistic expectations. To capture that you
think one gamble, g, is (strictly) preferable to another
gamble, f , we have

{p |Expp[g]> Expp[ f ]} ∈ F.

To capture that you think that a gamble, g, is desirable
(strictly preferable to the status quo) we have

{p |Expp[g]> 0} ∈ F.

This model is expressively powerful. It can, for example,
capture all the expressive power of the framework of desir-
able gambles. This involves some non-Archimadeanicity
by permitting the filters to be non-principal, i.e., not gener-
ated by a credal set. It can also capture all the expressive

power of the model of choice functions, or sets of desirable
gamble sets (we include a mixing axiom, but no Archi-
madean axiom).

Using other terms, this model was proposed and dis-
cussed in a joint paper with Jason Konek, (Campbell-Moore
and Konek, 2019), using the interpretation of beliefs with
probabilistic contents as outlined in Moss (2018). The main
results of this paper were stated there without proof.

The paper proceeds as follows. We introduce the model
of probability filters in section 2. We observe that it extends
the model of credal sets (section 2.2) and show when and
how to extend a given set of judgements to a probability
filter (section 2.4). In section 3 we show that the model
of probability filters captures all the expressive power of
framework of desirable gambles and in section 4 we show
it captures all the expressive power of the framework of
sets of desirable gamble sets or choice functions. Section 5
notes a case where it goes beyond the framework of choice
functions. Full investigation of its expressive power remains
future work.

2. Probability Filters
Fix Ω as a finite non-empty set. Our results are all within
the context of finite sample spaces. Extending these results
is future work.

Setup 1 A probability function p : ℘(Ω)→ R is charac-
terised by a probability mass function, p : Ω→ R, with
p(ω)≥ 0 and ∑ω∈Ω p(ω) = 1.

p is regular iff p(ω) > 0 for every ω ∈ Ω. We restrict
attention to regular probability functions.

rProbs is the collection of all regular probability func-
tions on Ω.

We model your belief by a set of sets of probabilities,
F ⊆℘(rProbs). This captures your (probabilistic) opinions.
If you think that it is less than 0.3-likely to be rainy, then
{p | p(RAINY)< 0.3} ∈ F .

Further reflections on exactly what it means to have P ∈
F is future work, but we work with the idea that we use it
to naturally encode certain (probability-based) judgements.

We define what it is for F to be coherent as being a proper
filter. It must be closed under supersets (F3) and finite
intersections (F2). It should also be non-trivial: it should be
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PROBABILITY FILTERS AS A MODEL OF BELIEF

non-empty (F1) and it must not contain the emptyset (F4)
otherwise it contains every P⊆ rProbs. (Axiom F4 is what
it is for a filter to be proper).

Definition 2 Say F ⊆℘(rProbs) is coherent iff it is a
proper filter; that is:

F1. F 6= /0.

F2. If P,Q ∈ F then P∩Q ∈ F.

F3. If P ∈ F and Q⊇ P then Q ∈ F.

F4. /0 /∈ F.

Axioms F2 and F3 ensure that F is closed under finite
probabilistic consequence. That is, if P1, . . . ,Pn ∈ F and
Q⊇ P1∩ . . .∩Pn then also Q ∈ F . This is the characteristic
feature of a filter.

2.1. Regularity

We have essentially encoded an axiom in the setup by only
considering filters on regular probabilities. We have de-
cided to adopt this to match the assumption used in the
desirable gambles setting that weakly dominating 0 is suffi-
cient to be (strictly) desirable.

I conjecture that all the results will carry through, with
appropriate modifications, in the setting without regularity.
The regularity assumption does help in our proofs because
the sets that we apply separating hyperplane results to are
then closed. In the setting without regularity, this will be
a bit more delicate, but with appropriate modifications it
should still be possible.

It would be more explicit to simply have F a collection
of sets of possibly non-regular probabilities and then have
an axiom:

• For each ω ∈Ω, {p | p(ω)> 0} ∈ F

However this makes the notion of natural extension more
complex and it is easier to simply impose it as part of the
setup.

2.2. Principal filters and sets of probabilities

Special kinds of filters are those which are principal; that
is, there is some set of probabilities, P⊆ rProbs, with

P ∈ F iff P⊇ P (1)

Principal filters are equivalent to the model of belief given
by credal sets, where we capture your beliefs with a single
set of probabilities. Strictly speaking, since we have restric-
ted to regular probabilities, it is equivalent to (arbitrary)
sets of regular probabilities, but by relaxing this assumption
the more general equivalence will hold.

The restriction to principal filters, and thus the model of
belief of credal sets, is given by strengthening the axiom of
finite intersections (axiom F2) to arbitrary intersections:

Finf∩. If Pi ∈ F for each i ∈ I then
⋂

i∈I Pi ∈ F .
(Where I can be infinite.)

We will not adopt this strengthened axiom. Non-principal
filters are important to capture the expressive power of
the desirable gambles framework as it allows for non-
Archimadean behaviour when we consider free filters,
where

⋂
F = /0.

2.3. Totality / Ultrafilters

Another interesting class of filters are ultrafilters. These
are the maximal filters, where there is no filter F ′ ⊃ F .
Ultrafilters satisfy the axiom of totality:

Ftot. P ∈ F or P ∈ F , where P := rProbs\P.

This says that you are maximally opinionated. For each
probabilistic property you either endorse it or its comple-
ment.

Principal ultrafilters give us precise probabilities. Non-
principal ultrafilters roughly give us hyperreal probabilit-
ies.1

2.4. Natural Extensions

If we obtain some of your probabilistic judgements but not
a complete description, in what cases that it be extended
coherently?

We define what the resultant extension will be, if pos-
sible. This just closes a set under finite intersections and
supersets.

Definition 3 Let E ⊆℘(rProbs). ext(E), is defined by Q∈
ext(E) iff there are some P1, . . . ,Pn ∈ E and Q⊇ P1∩ . . .∩
Pn.

This is coherent whenever /0 /∈ ext(E). This is when E sat-
isfies the finite intersection property: whenever P1, . . . ,Pn ∈
E, P1∩ . . .∩Pn 6= /0. Such E are called filter subbases, and
ext(E) is the filter generated by it.

Proposition 4 There is a proper filter F ⊇E iff /0 /∈ ext(E);
and the minimal such filter is ext(E).

Another useful case is when E is already closed under
finite intersections. In this case, ext(E) just takes supersets.
For example, if we have a descending chain P1 ⊇ P2 ⊇ P3 ⊇
. . ., then Q ∈ ext({P1,P2, . . .}) iff Q⊇ Pi for some i.

1. This is not a statement of a formal claim, although a formal result is
hopefully possible. This would then mean that any probability filter
can be given by a set of hyperreal probabilities because any filter is
characterised by the set of ultrafilters refining it.
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3. Probability filters and desirable gambles
One of the most prominent models of belief in the impre-
cise probability literature is to model one’s belief by a set
of desirable gambles (Walley, 2000). In this section, we
will show that the probability filters model contains all the
representational power of such sets of desirable gambles.

Setup 5 G is the set of all gambles, which are the bounded
functions from Ω to R.2

When f (ω)≥ g(ω) for all ω ∈Ω, we will say f ≥ g.
G&0 is the set of gambles which weakly dominate 0. I.e.,

where f ≥ 0 and f (ω)> 0 for some ω ∈Ω.3

For p probabilistic and g a gamble, we use p · g for
∑ω∈Ω p(ω)g(ω), which is just probabilistic expectation,
also denoted Expp[g].

We will also make use of the positive linear hull of a set:
posi(B) := {∑n

i=1 λigi |n ∈ N,λi > 0,gi ∈ B}.
Finally, we use IX as the indicator gamble for X ⊆ Ω.

I.e., the gamble taking value 1 for ω ∈ X and value 0 for
ω /∈ X.

Definition 6 D is coherent if:

D1. 0 /∈ D

D2. If g ∈ G&0, then g ∈ D

D3. If g ∈ D and λ > 0, then λg ∈ D

D4. If f ,g ∈ D, then f +g ∈ D

Given a probability filter, we can extract a set of desirable
gambles using:

g ∈ DF iff {p | p ·g > 0} ∈ F (2)

Any coherent probability filter gives a coherent set of
desirable gambles.

Theorem 7 If F is coherent, then DF is a coherent set of
desirable gambles.

Proof Axiom D1 follows from axiom F4 by observing that
{p | p ·0 > 0}= /0.

Axiom D2: If g ∈ G&0, any p ∈ rProbs has p ·g > 0; so
this follows from rProbs ∈ F (using our choice to restrict
to regular probabilities, and axioms F1 and F3). Note that
this relies on our restriction to regular probabilities.

Axiom D3 holds because when λ > 0, {p | p ·g > 0}=
{p | p ·λg > 0}.

Axiom D4: If g∈DF and f ∈DF , then {p | p ·g> 0}∈F
and {p | p · f > 0} ∈ F . So {p | p ·g > 0 and p · f > 0} ∈ F
by axiom F2. If p ·g> 0 and p · f > 0 then also p ·(g+ f )>

2. Since Ω is finite, they are automatically bounded.
3. These are usually simply denoted with G>0, but I keep the & to

highlight the weak dominance component, rather than that g(ω)> 0
for all ω ∈Ω.

0. So by axiom F3, {p | p · (g + f ) > 0} ∈ F , and thus
g+ f ∈ DF .

Given a set of desirable gambles, D, we can construct a
filter FD which is the minimal filter evaluating each g ∈ D
as desirable. That is, it is the minimal filter where {p |
p · g > 0} ∈ F for each g ∈ D. Formally, then, FD is the
filter generated by this collection, that is, it just closes it
under finite intersection and supersets.

We are able to prove that in doing this we do not go
beyond the constraints of coherence in the desirable gamble
model; that is, we do not add evaluations that gambles are
desirable for any gambles not already in D.

Theorem 8 If D is coherent, then

FD := ext({{p | p ·g > 0} |g ∈ D}) (3)

is coherent and

f ∈ D iff {p | p · f > 0} ∈ FD. (4)

Thus, for distinct coherent D and D′, FD and FD′ are distinct.
And DFD = D.

Proof Any f ∈ D has {p | p · f > 0} ∈ FD by construction.
We need to show the converse.

By definition of ext, {p | p · f > 0} ∈ FD iff there are
g1, . . . ,gn ∈ D with

{p | p · f > 0}⊇ {p | p ·g1 > 0}∩ . . .∩{p | p ·gn > 0}. (5)

The main work of this proof is to show that this entails that
f ∈ posi({g1, . . . ,gn}∪G&0).

Suppose f /∈ posi({g1, . . . ,gn} ∪ G&0). This is a con-
vex cone, so by a separating hyperplane theorem (Klee,
1955), we can find a separating linear functional that can
be normalised to obtain a probabilistic p with p · g ≥ 0
for each g ∈ posi({g1, . . . ,gn} ∪G&0) and p · f ≤ 0 (see
figure 1). Since 0 /∈ posi({g1, . . . ,gn}∪G&0) by coherence

g1
g2

f

posi({g1,g2}∪G&0)

p

p ·g > 0

p ·g < 0

Figure 1: When f /∈ posi({g1, . . . ,gn}∪G&0), we can sep-
arate them by a hyperplane.
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of D, we can in fact ensure p ·g > 0 for each g in this set.
Since each I{ω} is in this set, each p(ω) is thus positive,
so this gives a regular probabilistic p with p · gi > 0 for
g1, . . . ,gn, but p · f ≤ 0; and thus {p | p · f > 0} 6⊇ {p |
p ·g1 > 0}∩ . . .∩{p | p ·gn > 0}.

So we have shown that {p | p · f > 0} ⊇ {p | p ·g1 > 0}∩
. . .∩{p | p · gn > 0} implies f ∈ posi({g1, . . . ,gn}∪G&0).
Thus, for f ∈ FD, there are some g1, . . . ,gn ∈ D with f ∈
posi({g1, . . . ,gn}∪G&0); and so f ∈ D by the coherence
of D. So we have shown equation (4).

For the coherence of FD we just need to use equation (4)
and the coherence of D to observe that {p | p ·−1 > 0}=
/0 /∈ FD.

Theorem 7 tells us that we can represent all coherent
sets of desirable gambles in the probability filter model,
including those that are not representable by credal sets.
Consider Ω = {ωt ,ω f } and the coherent set of desirable
gambles with h := 〈 1

2 ,−
1
2 〉 ∈D, but also each gn ∈D where

gn :=−h+ 〈 1
n ,

1
n 〉= 〈−

1
2 +

1
n ,

1
2 +

1
n 〉; as in figure 2.

Dgn

h

Figure 2: D with 〈 1
2 ,−

1
2 〉 ∈D and 〈− 1

2 +ε, 1
2 +ε〉 ∈D for

each ε > 0.

This set of desirable gambles cannot be captured in the
credal set model, but it can be captured by a probability
filter. Since h ∈ D,{

p
∣∣∣∣ p(ωt)>

1
2

}
∈ FD.

Since fn ∈ D, {
p
∣∣∣∣ p(ωt)<

1
2
+

1
n

}
∈ FD.

This can be given a very natural gloss. You think that the
probability exceeds 1

2 but not by any particular amount.
This filter is non-principal (indeed it is free:

⋂
FD = /0).

This gives it non-Archimadean behaviour. If we were to
ask what one thinks the probability of ωt is, we would have
to give a hyperreal value. The model based on probability
filters does not have such hyperreals as values, i.e., it is
based on standard-valued probabilities, but something like
hyperreals are captured by the filter structure.

The probability filters model goes beyond the model of
desirable gambles. It can, for example, capture arbitrary
credal sets rather than just convex ones.

4. Probability filters and choice functions

4.1. Choice functions

We now consider a more general model of uncertainty:
choice functions (cf. Seidenfeld et al., 2010). We follow
De Bock and de Cooman (2018) and consider these under
a desirability based characterisation so it easily extends the
model of desirable gambles that we have just considered.
(The connection to choice is spelled out in De Bock and de
Cooman.)

Whereas the desirable gambles framework just considers
whether an individual gamble is desirable or not, in this
more general framework we also consider whether a set of
gambles contains at least one desirable gamble. We model
your uncertainty with a set of sets of gambles, K ⊆℘(G ),
where a set of gambles (also called a gamble set), A, is in
K if you think that at least one member of A is desirable.

Given a probability filter, F , we can extract a collection
of gamble sets, KF , with A ∈ KF if you think that at least
one member of A is desirable, using F to determine what
your opinions are. However, there are different ways to
understand what it is to think that some member of A is
desirable. Does there need to be some particular member
of the set which you think is desirable, or does it suffice
that you think that something is desirable without being
able to identify any particular one? In the special case when
filters are principal filters, this is equivalent to the question
of whether a choice function is extracted from a credal set
according to Maximality (Walley/Sen) or E-admissibility
(Levi).

To apply the analogue of E-admissibility in this setting,
there doesn’t need to be a particular gamble that you think
is desirable, so long as you think that at least one of them
is.4 This is captured by putting:

A ∈ KF iff {p | there is some g∈A with p ·g > 0} ∈ F
(6)

To obtain Maximality rule, we could instead use:

A ∈ KMax
F iff there is some g ∈ A with {p | p ·g > 0} ∈ F .

(7)
We will associate a filter with a collection of desirable
gamble sets using equation (6). This is similar to Seiden-
feld et al. (2010) who axiomatise choice functions associ-
ated with credal sets by E-admissibility. It is in contrast to

4. Linking to choice functions, this says you reject an option, o, from
a set, O, if you think it is non-optimal, in the sense that {p |
there is some o′ ∈ O with ExppU(o′)> ExppU(o)} ∈ F . If the filter
is principal, given by credal set P, this is just when every p ∈ P has
some o′ ∈ O with ExppU(o′)> ExppU(o).

4
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De Bock and de Cooman (2018) who, following van Camp
(2018), want their axioms to allow for both.5

We will now give analogous results to those offered
in section 3. We give axioms for when a set of desirable
gamble sets is coherent (including a mixing axiom but no
Archimadean axiom) and show that the filter model can
capture any coherent set of desirable gamble sets.

4.2. Axioms on desirable gamble sets

Our axioms are based on De Bock and de Cooman (2018),
with two important differences. Firstly, we include a so-
called mixing axiom (our axiom K7). This is because of our
choice to associate a filter with a set of desirable gamble
sets using equation (6), generalising E-admissibility from
credal sets. Secondly, we do not restrict attention to finite
gamble sets.

Note that like De Bock and de Cooman, we do not im-
pose any Archimadeanicity axiom.6 This is in contrast to
Seidenfeld et al. (2010), who are axiomatising choice func-
tions obtained from credal sets. Our more general model
of probability filters allows us to drop the Archimadean
axiom.

The model of sets of desirable gamble sets (strictly)
extends the desirable gambles model of section 3.

Before stating the axioms, there are two notions used in
the axioms:

• posi(B) is the set of positive finite linear combinations
of members of B. That is:

posi(B) =

{
n

∑
i=1

λigi

∣∣∣∣∣n ∈ N,λi > 0,gi ∈ B

}
(8)

This is the smallest convex cone extending B.

• clposi(B) is the closure of posi(B). This is the smallest
closed and convex cone extending B.

Definition 9 K ⊆℘(G ) is coherent if it satisfies

K1. /0 6∈ K

K2. If A ∈ K then A\{0} ∈ K.

K3. If g ∈ G&0, then {g} ∈ K

K4. If A ∈ K and B⊇ A, then B ∈ K

K5. If A ∈ K and for each g ∈ A, fg is some gamble where
fg ≥ g, then { fg |g ∈ A} ∈ K.

K6. If A1, . . . ,An ∈ K and for each sequence g1 ∈
A1, . . . ,gn ∈ An, f〈g1,...,gn〉 is some member of
posi({g1, . . . ,gn}), then

{ f〈g1,...,gn〉 |g1 ∈ A1, . . . ,gn ∈ An} ∈ K
5. To allow for both in the probability filter framework, we can hold the

probability filter fixed as the model of belief but allow for varying
choice procedures.

6. See also De Bock and de Cooman (2019, §9).

K7. If A ∈ K and clposi(B)⊇ A⊇ B then B ∈ K.

Our axioms K1 to K6 are very close to the axioms of
De Bock and de Cooman (2018), with two differences.
Firstly, our axiom K6 is already generalised to apply to
finitely many sets, rather than just for a pair A1 and A2.
Secondly, we have added the axiom, K5, which says that if
replace some members of a desirable gamble set by weak
dominators, then the set remains desirable. In the setting
where gamble sets must be finite these are both derivable
from the De Bock and de Cooman axioms, but in the infinite
setting their status is less clear. We will further discuss them
in section 4.4.

Axiom K7 is the so-called mixing axiom. It restricts
to special kinds of choice functions (see De Bock and
de Cooman, 2019, §8). Our formulation of this axiom is
similar to the formulation of De Bock and de Cooman
(2019, Sec. 8) except that it follows Seidenfeld et al. (2010,
axiom 2b) in taking the closure. This is not present in
De Bock and de Cooman as they are restricting attention to
finite sets of gambles. Further discussion of the formulation
of this axiom is left to section 4.5, and we move to our
results.

Our first result shows us that these axioms follow from
our probability filter axioms, given the interpretation of
equation (6).

Theorem 10 If F is coherent, then KF is coherent; where
KF is given by:

A∈KF iff {p | there is some g∈A with p ·g > 0} ∈ F (6)

In the proof, we use the notation

JAK := {p | there is some g∈A with p ·g > 0} (9)

Proof
Axiom K1 follows from axiom F4 as J /0K = /0 /∈ F .
Axiom K2: Note that p ·0 = 0. So for every p, if g ∈ A

with p · g > 0, then g ∈ A \ {0}; thus JAK ⊆ JA \ {0}K; so
JAK ∈ F implies JA\{0}K ∈ F by axiom F3, as required.

Axiom K3: If g ∈ G&0, then every p ∈ rProbs has p ·g >
0, so J{g}K = rProbs ∈ F (axioms F1 and F3).

Axiom K4 follows from axiom F3 because B⊇A implies
JBK⊇ JAK.

Axiom K5: observe that if p ·g > 0 then p · fg > 0, so it
holds by axiom F3.

Axiom K6: If A1, . . . ,An ∈ KF , then JA1K, . . . ,JAnK ∈ F
so by axiom F2, JA1K∩ . . .∩ JAnK ∈ F . For any p ∈ JA1K∩
. . .∩JAnK, there is some g1 ∈ A1, . . . ,gn ∈ An with p ·gi > 0
for each i, and thus for f〈g1,...,gn〉 ∈ posi({g1, . . . ,gn}), also
p · f〈g1,...,gn〉 > 0. So it follows from axiom F3.

Now consider axiom K7. We consider the closure and
positive hull parts separately, observing that they can be
combined to obtain axiom K7 (see proposition 14).

Let posi(B) ⊇ A and JAK ∈ F . We need to show that
JBK ∈ F . By axiom K4, it suffices to show that JAK⊆ JBK.

5
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So we need to show that if p · f > 0 for some f ∈ A then
p · g > 0 for some g ∈ B. Since we have assumed that
A ⊆ posi(B), if f ∈ A then there are some g1, . . . ,gn ∈ B
and λi positive with f = λ1g1+ . . .+λngn. If p · f > 0, then
also p · gi > 0 for some i. And thus we have found some
g ∈ B with p ·g > 0, as required.

If f ∈ A⊆ cl(B), then there is a sequence, 〈gn〉, of mem-
bers of B with gn converging to f . If p · f > 0, then there is
some gm (in fact a tail) with p ·gm > 0. So again JAK⊆ JBK,
as required.

4.3. Expressive power of probability filters

The probability filter model captures all the representational
power of sets of desirable gamble sets, as given by our
axioms, which include the mixing axiom.

We show that for any coherent set of gamble sets, we
can find a filter which evaluates exactly those gamble sets
as desirable.

Theorem 11 For any coherent K,

FK := ext({p | there is some g∈A with p ·g > 0} |A ∈ K)
(10)

is coherent with

B ∈ K iff {p | there is some g∈B with p ·g > 0} ∈ FK
(11)

Thus, for distinct coherent K and K′, FK and FK′ are distinct.
And KFK = K.

The proof extends the proof used for theorem 8; but we
will first state a lemma:

Lemma 12 Suppose K is coherent. If A1, . . . ,An ∈ K and
for each sequence g1 ∈ A1, . . . ,gn ∈ An, we have some
f〈g1,...,gn〉 ∈ clposi(B)∩posi({g1, . . . ,gn}∪G&0), then B ∈
K.

Proof If f〈gi〉 ∈ posi({g1, . . . ,gn} ∪ G&0), then unless
f〈gi〉 ∈ G&0, there is some h〈gi〉 ∈ posi({g1, . . . ,gn}) with
f〈gi〉 ≥ h〈gi〉.

If there is some f ∈ clposi(B) with f ∈ G&0, then { f} ∈
K (axiom K3) so clposi(B) ∈ K (axiom K4), thus B ∈ K
(axiom K7).

So suppose we have each f〈gi〉 /∈ G&0, and let h〈gi〉 be as
above. By axiom K6, {h〈gi〉 |g1∈A1, . . . ,gn∈An} ∈ K; and
then by axiom K5, { f〈gi〉 | g1∈A1, . . . ,gn∈An} ∈ K. And
thus clposi(B) ∈ K by axiom K4. So B ∈ K by axiom K7.

Proof of Theorem 11. We continue to use the notation
JBK := {p | there is some g∈A with p ·g > 0}. Any B ∈ K
has JBK ∈ FK by construction, which is one direction of
equation (11). We need to show the other direction.

By definition of ext and FK , JBK ∈ FK iff there are
A1, . . . ,An ∈ K with JBK⊇ JA1K∩ . . .∩ JAnK. We will now
show that if JBK ⊇ JA1K ∩ . . . ∩ JAnK, then for each se-
quence g1∈A1, . . . ,gn∈An there is some f〈gi〉 ∈ clposi(B)∩
posi({g1, . . . ,gn}∪G&0), which will let us use Lemma 12
to get that B ∈ K, as required.

Suppose clposi(B) and C := posi({g1, . . . ,gn}∪G&0) are
disjoint. Since we specified G&0 to be specified by weak
dominance, these are both closed cones (when adding 0)
and they are disjoint (except at 0). Thus we can use a separ-
ation result for convex cones (Klee, 1955, Theorem 2.7) to
find a linear functional separating them (see figure 3).7 By

g2

g1

pB

clposi(B)

C := posi({g1, . . . ,gn}∪G&0)

p ·g > 0
p ·g < 0

Figure 3: When clposi(B) and C := posi({g1, . . . ,gn} ∪
G&0) are disjoint they can be separated.

normalising this, we have a probabilistic p with p ·g ≥ 0
for each g ∈C and p · f ≤ 0 for each f ∈ clposi(B). Since
0 ∈ clposi(B) and we assumed C and clposi(B) are disjoint,
we have that 0 /∈C, and thus for every g∈C, in fact p ·g> 0.
Since each I{ω} ∈C, each p(ω) is positive, so we have our
regular probabilistic p with p · gi > 0 for g1, . . . ,gn, but
p · f ≤ 0 for each f ∈ B. Thus p ∈ JA1K∩ . . .∩ JAnK but
p /∈ JBK, so JBK 6⊇ JA1K∩ . . .∩ JAnK.

So we have shown that if JBK ⊇ JA1K∩ . . .∩ JAnK, then
for each sequence g1 ∈ A1, . . . ,gn ∈ An there is some f〈gi〉 ∈
clposi(B) with f ∈ posi({g1, . . . ,gn}∪G&0). By lemma 12,
this implies B ∈ K. So we have shown equation (11).

For the coherence of FK we just need to use equation (11)
and the coherence of K to observe that J{−1}K = /0 /∈ FK .

4.4. Our Alternative Axioms

We now discuss how our main axioms diverge from those
of De Bock and de Cooman (2018).

7. Local compactness of C follows from the local compactness of RΩ

and the fact that C is closed.
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4.4.1. AXIOM K6

We have formulated axiom K6 for finitely many sets instead
of the formulation of De Bock and de Cooman (2018), who
state it as it applies just to a pair of sets (their K3):

• If A1,A2 ∈ K and for each g1 ∈ A1, g2 ∈ A2, f〈g1,g2〉 is
some member of posi({g1,g2}), then { f〈g1,g2〉 | g1 ∈
A1, g2 ∈ A2} ∈ K.

When the gamble sets must be finite, it can be iterated to
obtain axiom K6. This is a consequence of their represent-
ation result (De Bock and de Cooman, 2018, Theorem 7).
But since we are working in the infinite setting, we do not
have access to these results and so we have opted to simply
include the generalisation directly. It is an open question
whether it is derivable from the pair-version in the infinite
setting.

One might consider extending axiom K6 to infinitely
many sets:

7 If Ai ∈ K for each i ∈ I (possibly infinite) and for
each sequence 〈gi〉i∈I with each gi ∈ Ai, f〈gi〉 is some
member of posi({gi | i ∈ I}), then

{ f〈gi〉 | 〈gi〉 ∈∏
i∈I

Ai} ∈ K

This is adopted in De Bock (2020). But it is not valid when
one uses non-principal filters and the E-admissibility-style
interpretation given by equation (6).
Proof Consider some F as in section 3, with{

p
∣∣ p(ωt)>

1
2

}
∈ F and each

{
p
∣∣ p(ωt)<

1
2 +

1
n

}
∈ F ,

(see figure 4).

DFgn

−gn

Figure 4: gn = 〈− 1
2 +

1
n ,

1
2 +

1
n 〉.

This will have each singleton {gn} ∈ KF .
It also has {−gn |n ∈ N} ∈ KF . To see this, note that for

p with p(ωt) >
1
2 , when 1

n < p(ωt)− 1
2 , then p ·−gn > 0.

Thus J{−gn |n ∈ N}K ∈ F .
This leads to a violation of the infinite extension of ax-

iom K6: Any sequence selecting a member of each of the
(infinitely many) singletons {gn} as well as a member of
{−gn | n ∈ N} includes some −gn but also includes each
gn; so 0 = gn +−gn is in each relevant posi but {0} /∈ KF .

4.4.2. TAKING DOMINATORS - AXIOM K5

Our axiom K5 is used in lemma 12 to allow us to replace
members of a set by weak dominators and remain desirable.
This has a clear intuitive motivation: it can only improve
the situation.

When gamble sets are finite, one can use De Bock and
de Cooman (2019, Lemma 34) to see that it follows from
the other axioms. They show that one can use axioms K3
and K6 to replace a single member of a desirable set with a
dominator. In the finite setting, this can be iterated to derive
axiom K5, but not when can be infinite.

In fact, it is nonetheless derivable from the other axioms
when gamble sets can be infinite but where Ω is finite.

Proposition 13 When Ω is finite, axiom K5 follows from
axioms K3 and K6.

Proof Let Ω = {ω1, . . . ,ωn}. If fg ≥ g then fg ∈
posi({g,Iω1 , . . . ,Iωn}). So since each {Iωi} ∈ K by ax-
iom K3, also { fg |g ∈ A} ∈ K by axiom K6.

Since we have assumed that Ω is finite, we could omit
this axiom. However, it is not clear that an analogous ar-
gument will work when Ω is infinite. It is also not clear
that an analogous argument will work when regularity is
dropped and we use strict dominance for axiom K3. Since
I do not want to unnecessarily restrict the results, I have
added this axiom.

We could have opted to include this strength in other
ways, which some readers may find more natural. In par-
ticular, we could add it by strengthening axiom K6 by
instead of requiring f〈g1,...,gn〉 be in posi({g1, . . . ,gn}), al-
lowing it to be in posi({g1, . . . ,gn}) + G≥0, or directly
posi({g1, . . . ,gn}∪G&0).

It would also follow if we extend axiom K6 (with just
posi({g1, . . . ,gn})) to apply to infinitely many sets. But as
we showed in section 4.4.1, this is not valid.

4.5. The Formulation of the Mixing Axiom - Axiom K7

We have adopted the mixing axiom in the form:

K7. If A ∈ K and clposi(B)⊇ A⊇ B then B ∈ K.

There are various closely related axioms that differ just
in which operation they use in place of clposi. For O an
operator such as conv, posi, clconv, let MO be the axiom:

MO. If A ∈ K and O(B)⊇ A⊇ B then B ∈ K.

Given axiom K4, we could equivalently state any of these
as

MO. If O(B) ∈ K then B ∈ K.

De Bock and de Cooman (2019) choose to use the axiom
Mposi instead of Mconv. Similarly, we have chosen to use

7
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Mclposi instead of Seidenfeld et al. (2010)’s use of Mclconv.
(De Bock and de Cooman can omit the closure component
because they restrict to finite sets of gambles.) The choice
of posi or conv doesn’t make a difference.

Proposition 14 Given axioms K4 and K6, the following
are equivalent:

1. Mclposi = axiom K7

2. Mcl and Mposi

3. Mclconv

4. Mcl and Mconv

Proof Item 2 =⇒ item 1: clposi(B) = cl(posi(B)). If
clposi(B) ∈ K, then by Mcl, posi(B) ∈ K and by Mposi,
B ∈ K.

Item 1 =⇒ item 2: If cl(B) ∈ K, then clposi(B) ∈ K
by axiom K4, so B ∈ K. Similarly, if posi(B) ∈ K then
clposi(B) ∈ K so B ∈ K.

The argument for item 3⇐⇒ item 4 is exactly analog-
ous.

For item 4⇐⇒ item 2, we need to show that conv(B) ∈
K iff posi(B) ∈ K. Since posi(B) ⊇ conv(B), one direc-
tion follows from axiom K4. For the other direction, as-
sume posi(B) ∈ K. For each g ∈ posi(B) there is some
fg ∈ conv(B) where fg ∈ posi({g}) (it can simply be nor-
malised). So by axiom K6, conv(B) ∈ K.

It is worth noting that for scalar(B) = {λgg |λg > 0, g ∈
B}, Mscalar follows directly from axiom K6.

5. Beyond
An encoding of which gamble sets are desirable, using
equation (6), does not suffice to tell us everything about
the opinion state, as given by a probability filter. This con-
trasts to the case of credal sets, where Archimadean (mix-
ing) choice functions are equivalent to sets of probabilities
(Seidenfeld et al., 2010). The expressive power of prob-
ability filters goes strictly beyond that of sets of desirable
gamble sets.

One example of this can be given by considering weak
desirability. In the desirable gambles model, we only dir-
ectly encode whether a gamble is strictly preferable to the
status quo, or equivalently, whether one gamble is strictly
preferred to another. From this, we cannot always recover
judgements of weak desirability, or whether one gamble is
weakly preferred to another.

In section 3 we considered a case where you think that
the probability exceeds 1

2 but not by any particular amount.
The desirable gambles that this leads to are identical to
those where you think the probability does not exceed 1

2 by
any particular amount but leave open whether it is strictly
above 1

2 or equal to 1
2 . The move to sets of desirable gamble

sets also does not help distinguish these. It cannot distin-
guish what Schervish et al. (ms) call semi-preference from
indifference.

We could add such expressive power by extending the
desirability based accounts to also explicitly include judge-
ments of weak desirability. (See also Quaeghebeur et al.,
2015.) For the gamble sets framework this means encoding
not only when you judge that the set contains a (strictly)
desirable gamble but also whether you judge it contains a
weakly desirable gamble. Equivalently we could encode
judgements on whether the set of gambles contains only
(strictly) desirable gambles.

This would allow the expressive power of the desirability
based frameworks to come closer to that of probability
filters. However, it will still fall short of the full expressive
power of probability filters. Consider again the filter where
you think that the probability exceeds 1

2 but not by any
particular amount. There are many distinct refinements of
it (though we need the axiom of choice to obtain them). For
example, an ultrafilter needs to specify whether you think
that the probability is in {.51, .501, .5001, .50001, . . .} or
not.

I conjecture that any such refinements do not distinguish
any matters of whether sets contain some or only contain
strictly or weakly desirable gambles.

A more detailed story of exactly what it means to think
that the probability is in {.51, .501, .5001, . . .} or be repres-
ented by F with {p | p(ωt) ∈ {.51, .501, .5001, . . .}} ∈ F
remains future work.

In the desirability-based spirit, one proposal for aiding
this interpretation question is to also consider whether a set
of gambles contains at least one gamble that’s equivalent to
the status quo. I conjecture that this allows the full power
of probability filters to be captured.

6. Conclusion

We have proposed representing beliefs by probability filters.
It is a natural model that directly captures probabilistic
judgements; and it is easy to work with.

It directly extends the credal sets framework, and we
have shown that it captures the power of the desirable
gambles framework, thus providing a nice unifier. Further
models such as comparative frameworks are also easily
captured in the framework.

In summary, it is a natural and powerful framework for
modelling uncertain belief.
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